Toxicity of copper and cadmium in combinations to Duckweed analyzed by the biotic ligand model.

Environ Toxicol

Department of Chemical Science and Engineering, Tokyo National College of Technology, 1220-2 Kunugida, Hachioji, Tokyo 193-0997, Japan.

Published: June 2008

The biotic ligand model (BLM) of acute toxicity to aquatic organisms is based on the concept that metals binding onto biotic ligand may cause toxic effect on the organism. The BLM can take into incorporation between metal speciation and the protective effects of competing cations account. The demonstrated BLM can provide a good estimation of the amount of single metal effect under various conditions such as pH, coexistence of other non toxic cations. However, toxic metals are often found as mixture in nature. This study estimated combined toxicity of Cu and Cd examined by growth inhibition of Duckweed (Lemna paucicostata) by using single toxicity data as toxic unit (TU) derived by three types of model, BLM and two conventional models, free ion activity model (FIAM), and total metal concentration model. According to our results, single toxicity data derived by the BLM can estimate combined toxicity described as a function of TU. Particularly under the high level of heavy metals stress, BLM clearly predicted toxicity of heavy metals compared with other two models. According to numeric correlation (R(2), root mean square error), the order is BLM (R=0.83, RMSE=13.5)> total metal concentration model (R=0.41, RMSE=24.9)> FIAM (R=0.36, RMSE=26.1).

Download full-text PDF

Source
http://dx.doi.org/10.1002/tox.20348DOI Listing

Publication Analysis

Top Keywords

biotic ligand
12
ligand model
8
model blm
8
combined toxicity
8
single toxicity
8
toxicity data
8
total metal
8
metal concentration
8
concentration model
8
heavy metals
8

Similar Publications

This study aimed to develop a bioavailability-based effects assessment method for nickel (Ni) to derive acute freshwater environmental thresholds in Europe. The authors established a reliable acute freshwater Ni ecotoxicity database covering 63 different freshwater species, and the existing acute Ni bioavailability models for invertebrates were revised. A single average invertebrate bioavailability model was proposed, in which the protective effects of Ca2+ and Mg2+ on Ni2+ toxicity were integrated as a single-site competition effect at the Ni biotic ligand.

View Article and Find Full Text PDF

Plant endogenous signaling peptides shape growth, development and adaptations to biotic and abiotic stress. Here, we identify C-TERMINALLY ENCODED PEPTIDEs (CEPs) as immune-modulatory phytocytokines in Arabidopsis thaliana. Our data reveals that CEPs induce immune outputs and are required to mount resistance against the leaf-infecting bacterial pathogen Pseudomonas syringae pv.

View Article and Find Full Text PDF
Article Synopsis
  • Gadolinium (Gd) is a lanthanide metal that poses acute toxicity risks due to its use in technology, with toxicity reliant on ion concentrations and chemical speciation.
  • The Biotic Ligand Model (BLM) was developed to assess Gd's toxicity to the freshwater crustacean Daphnia magna, validated using various cation concentrations and real water samples from France and Germany.
  • Results showed that major cations like potassium, magnesium, and calcium compete with Gd for binding sites, leading to successful toxicity predictions in many freshwater samples, although challenges arose with high conductivity and low pH conditions.
View Article and Find Full Text PDF

Antagonistic systemin receptors integrate the activation and attenuation of systemic wound signaling in tomato.

Dev Cell

November 2024

Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China. Electronic address:

Pattern recognition receptor (PRR)-mediated perception of damage-associated molecular patterns (DAMPs) triggers the first line of inducible defenses in both plants and animals. Compared with animals, plants are sessile and regularly encounter physical damage by biotic and abiotic factors. A longstanding problem concerns how plants achieve a balance between wound defense response and normal growth, avoiding overcommitment to catastrophic defense.

View Article and Find Full Text PDF
Article Synopsis
  • Ferric Reductase Oxidase (FRO) genes are crucial for iron uptake in plants, and a study identified and analyzed 65 FRO homologs in four cotton species, revealing conserved functions and structures of these proteins.
  • *The research showed that FRO proteins are mainly localized to the plasma membrane and highlighted their evolutionary patterns through phylogenetic analysis, as well as variations in gene structure and chromosomal distribution.
  • *Additionally, expression profiling indicated that GhFRO interacts with specific proteins for metal ion transport and showed significant downregulation in response to stress conditions, offering valuable insights into iron homeostasis and stress adaptations in cotton.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!