The metabolic activity of cells can be monitored by measuring the pH in the extracellular environment. Microfabrication and microfluidic technologies allow the sensor size and the extracellular volumes to be comparable to single cells. A glass substrate with thin film pH sensitive IrO( x ) electrodes was sealed to a replica-molded polydimethylsiloxane (PDMS) microfluidic network with integrated valves. The device, termed NanoPhysiometer, allows the trapping of single cardiac myocytes and the measurement of the pH in a detection volume of 0.36 nL. For wild-type (WT) single cardiac myocytes an acidification rate of 6.45 +/- 0.38 mpH/min was measured in comparison to 19.5 +/- 0.38 mpH/min for very long chain Acyl-CoA dehydrogenase (VLCAD) deficient mice in 0.8 mM of Ca(2+). VLCAD deficiency is a fatty acid oxidation disease leading to cardiomyopathy and arrhythmias. The acidification rate increased to 11.96 +/- 1.33 mpH/min for WT and to 32.0 +/- 4.64 mpH/min for VLCAD -/- in 1.8 mM of Ca(2+). The NanoPhysiometer concept can be extended to study ischemia/reperfusion injury or disorders of other biological systems to identify strategies for treatment and possible pharmacological targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4243529PMC
http://dx.doi.org/10.1007/s10544-007-9142-7DOI Listing

Publication Analysis

Top Keywords

acidification rate
12
single cardiac
12
cardiac myocytes
8
+/- 038
8
038 mph/min
8
on-chip acidification
4
rate measurements
4
single
4
measurements single
4
cardiac cells
4

Similar Publications

Reduction of glucose transporter 1 (GLUT1), even deletion, may results in cartilage fibrosis and osteoarthritis. This study aims to investigate the SUMOylation of GLUT1 in osteoarthritis through small ubiquitin-like modifier 1(SUMO1), and explore the role of SUMOylated GLUT1 in glycometabolism, proliferation and apoptosis in chondrocytes. Human chondrocytes were incubated with 10 ng/mL of IL-1β to mimic osteoarthritis in vitro.

View Article and Find Full Text PDF

EDNRB negatively regulates glycolysis to exhibit anti-tumor functions in prostate cancer by cGMP/PKG pathway.

Mol Cell Endocrinol

January 2025

Department of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, 830001, China. Electronic address:

Prostate cancer (PCa) is the most prevalent cancer in men and the leading cause of cancer-related mortality. Recent studies have highlighted the pivotal role of glycolysis in tumor progression. This study aimed to investigate the involvement of the EDNRB gene and its ligand endothelin 3 (EDN3) in glycolysis in PCa and to elucidate its underlying molecular mechanism.

View Article and Find Full Text PDF

The mitochondriotropic antioxidants AntiOxBEN and AntiOxCIN are structurally-similar but differentially alter energy homeostasis in human skin fibroblasts.

Biochim Biophys Acta Bioenerg

January 2025

CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.

Mitochondrial dysfunction and increased reactive oxygen species (ROS) generation play an import role in different human pathologies. In this context, mitochondrial targeting of potentially protective antioxidants by their coupling to the lipophilic triphenylphosphonium cation (TPP) is widely applied. Employing a six‑carbon (C) linker, we recently demonstrated that mitochondria-targeted phenolic antioxidants derived from gallic acid (AntiOxBEN) and caffeic acid (AntiOxCIN) counterbalance oxidative stress in primary human skin fibroblasts by activating ROS-protective mechanisms.

View Article and Find Full Text PDF

Realgar induces apoptosis by inhibiting glycolysis via regulating STAT3 in myelodysplastic syndrome.

J Ethnopharmacol

January 2025

Shanghai municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China. Electronic address:

Ethnopharmacological Relevance: Myelodysplastic syndrome (MDS) is a hematologic malignancy that presents a unique opportunity for traditional Chinese medicine (TCM) to demonstrate its distinctive value in treatment. Realgar, a component of TCM, has shown notable potential in alleviating clinical symptoms and improving the prognosis of MDS patients. However, the precise mechanisms underlying the treatment of MDS with realgar, particularly its effects on apoptosis-related pathways, remain poorly understood.

View Article and Find Full Text PDF

Acidic stability and mechanisms of soil cadmium immobilization by layered double hydroxides intercalated with mercaptosuccinic acid.

Environ Res

January 2025

State Key Laboratory of Soil & Sustainable Agriculture, Institute of soil science, Chinese academy of sciences, Nanjing 211135, China. Electronic address:

Layered double hydroxide intercalated with mercaptosuccinic acid (MSA-CFA) holds considerable promise for remediating cadmium (Cd)-contaminated soils through selective immobilization; however, its stability under acidic conditions has yet to be investigated. The acidic stability of MSA-CFA was investigated by acid stability investigation and simulated soil acidification. In the immersion test, the cadmium dissolution rate (DR) for the Cd immobilized products of MSA-CFA (MSA-CFA-Cd) was significantly lower (2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!