Using monomolecular films to characterize lipid lateral interactions.

Methods Mol Biol

Hormel Institute, University of Minnesota, Austin 55912, USA.

Published: February 2008

Membrane lipids are structurally diverse in ways that far exceed the role envisioned by Singer and Nicholson of simply providing a fluid bilayer matrix in which proteins reside. Current models of lipid organization in membranes postulate that lipid structural diversity enables nonrandom lipid mixing in each leaflet of the bilayer, resulting in regions with special physical and functional properties, i.e., microdomains. Central to understanding the tendencies of membrane lipids to mix nonrandomly in biomembranes is the identification and evaluation of structural features that control membrane lipid lateral mixing interactions in simple model membranes. The surface balance provides a means to evaluate the lateral interactions among different lipids at a most fundamental level--mixed in binary/ternary combinations that self-assemble at the air-water interface as monomolecular films, i.e., monolayers. Analysis of surface pressure and interfacial potential as a function of average cross-sectional molecular area provide insights into hydrocarbon chain ordering, lateral compressibility/elasticity, and dipole effects under various conditions including those that approximate one leaflet of a bilayer. Although elegantly simple in principle, effective use of the surface balance requires proper attention to various experimental parameters, which are described herein. Adequate attention to these experimental parameters ensures that meaningful insights are obtained into the lipid lateral interactions and enables lipid monolayers to serve as a basic platform for use with other investigative approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2612596PMC
http://dx.doi.org/10.1007/978-1-59745-513-8_5DOI Listing

Publication Analysis

Top Keywords

lipid lateral
12
lateral interactions
12
monomolecular films
8
membrane lipids
8
leaflet bilayer
8
surface balance
8
attention experimental
8
experimental parameters
8
lipid
7
lateral
5

Similar Publications

Cholesterol mediates the potential adverse influence of graphene quantum dots on placental lipid membrane model.

Sci Rep

December 2024

College of Physical Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.

Nanomaterial-biomembrane interactions constitute a critical biological process in assessing the toxicity of such materials in theoretical studies. However, many investigations simplify these interactions by using membrane models containing only one or a few lipid types, deviating significantly from the complexity of real membrane compositions. In particular, cholesterol, a ubiquitous lipid essential for regulating membrane fluidity and closely linked to various diseases, is often overlooked.

View Article and Find Full Text PDF

Cognitive decline and neuroinflammation in a mouse model of obesity: An accelerating role of ageing.

Brain Behav Immun

December 2024

Department of Geriatrics, University Medical Center Goettingen, Robert-Koch-Str. 42, 37075 Goettingen, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany. Electronic address:

Obesity, a pandemic, worldwide afflicts almost one billion people. Obesity and ageing share several pathological pathways leading to neurological disorders. However, due to a lack of suitable animal models, the long-term effects of obesity on age-related disorders- cognitive impairment and dementia have not yet been thoroughly investigated.

View Article and Find Full Text PDF

The viscoelastic properties of biological membranes are crucial in controlling cellular functions and are determined primarily by the lipids' composition and structure. This work studies these properties by varying the structure of the constituting lipids in order to influence their interaction with high-density lipoprotein (HDL) particles. Various fluorescence-based techniques were applied to study lipid domains, membrane order, and the overall lateral as well as the molecule-internal glycerol region mobility in HDL-membrane interactions (i.

View Article and Find Full Text PDF

During the study of algal diversity in pyroclastic deposits of the Kamchatka Peninsula, Chlorella-like green algae strains VCA-72 and VCA-93 were isolated from samples collected from along the Baydarnaya river bed on the Shiveluch volcano in 2018 and at the outlet of thermal vapors along the edge of the caldera on the southern slope of the Gorely volcano in 2020. Identification of the strains was carried out within the framework of an integrative approach using microscopic and molecular genetic methods, including preliminary taxon identification, obtaining nucleotide sequences of the small subunit and the internal transcribed spacer rRNA, reconstruction of phylogenetic trees and secondary structures of the ITS1 and ITS2 rRNA regions. On the phylogenetic tree, strain VCA-93 was clustered in the Micractinium thermotolerans species clade.

View Article and Find Full Text PDF

Introduction: T-cadherin, a non-canonical member of the cadherin superfamily, was initially identified for its involvement in homophilic recognition within the nervous and vascular systems. Apart from its adhesive function, T-cadherin acts as a receptor for two ligands: LDL, contributing to atherogenic processes, and HMW adiponectin, a hormone with well-known cardiovascular protective properties. However, the precise role of T-cadherin in adipose tissue remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!