Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In recent years, the margin of interaction between computational chemistry and most branches of experimental chemistry has increased at a fast pace. The experimental characterization of new systems relies on computational methods for the rationalization of structural, energetic, electronic and dynamical features. In particular, novel computational approaches allow accurate estimates of molecular parameters from spectroscopic optical observables, giving rise to synergic interactions between experimentalists and theoretically-oriented chemists. Our main objective in this tutorial review is to delineate the degree of advancement of possible integrated computational approaches to the interpretation of optical spectroscopies, with an accent on large molecules in solvated environments, based on the combination of advanced quantum mechanical treatments and stochastic modelling of relaxation processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b515155b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!