We have previously shown that a fraction of newly expressed GRP78 is translocated to the cell surface in association with the co-chaperone MTJ-1. Proteinase and methylamine-activated alpha(2)M (alpha(2)M*) bind to cell surface-associated GRP78 activating phosphoinositide-specific phospholipase C coupled to a pertussis toxin-insensitive heterotrimeric G protein, generating IP(3)/calcium signaling. We have now studied the association of pertussis toxin-insensitive Galphaq11, with GRP78/MTJ-1 complexes in the plasma membranes of alpha(2)M*-stimulated macrophages. When GRP78 was immunoprecipitated from plasma membranes of macrophages stimulated with alpha(2)M*, Galphaq11, and MTJ-1 were co-precipitated. Likewise Galphaq11 and GRP78 co-immunoprecipitated with MTJ-1 while GRP78 and MTJ-1 co-immunoprecipitated with Galphaq11. Silencing GRP78 expression with GRP78 dsRNA or MTJ-1 with MTJ-1 dsRNA greatly reduced the levels of Galphaq11 co-precipitated with GRP78 or MTJ-1. In conclusion, we show here that plasma membrane-associated GRP78 is coupled to pertussis toxin-insensitive Galphaq11 and forms a ternary signaling complex with MTJ-1.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.21607DOI Listing

Publication Analysis

Top Keywords

plasma membranes
12
pertussis toxin-insensitive
12
grp78
10
membranes alpha2m*-stimulated
8
alpha2m*-stimulated macrophages
8
mtj-1
8
coupled pertussis
8
toxin-insensitive galphaq11
8
grp78 mtj-1
8
galphaq11
6

Similar Publications

Putranjiva roxburghii is an important medicinal plant utilized for remedy of female reproductive ailments. Its seed extract is being used as a uterine health booster due to the presence of several pharmaceutically important phytochemicals. However, the presence of phytochemicals in its leaf is still unexplored.

View Article and Find Full Text PDF

The roles of mitochondria in global and local intracellular calcium signalling.

Nat Rev Mol Cell Biol

January 2025

MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA.

Activation of Ca channels in Ca stores in organelles and the plasma membrane generates cytoplasmic calcium ([Ca]) signals that control almost every aspect of cell function, including metabolism, vesicle fusion and contraction. Mitochondria have a high capacity for Ca uptake and chelation, alongside efficient Ca release mechanisms. Still, mitochondria do not store Ca in a prolonged manner under physiological conditions and lack the capacity to generate global [Ca] signals.

View Article and Find Full Text PDF

The Low Density Lipoprotein receptors (LDLRs) gene family includes 15 receptors: very low-density lipoprotein receptor (VLDLR), LDLR, Sorting-related receptor with A-type repeats (SORLA), and 12 LDL receptor-related proteins (LRPs): LRP1, LRP1B, LRP2, LRP3, LRP4, LRP5, LRP6, LRP8, LRP10, LRP11, LRP12, LRP13. Most of these are involved in the transduction of key signals during embryonic development and in the regulation of cholesterol homeostasis. In oviparous animals, the VLDL receptor is also known as VTGR since it facilitates the uptake of vitellogenin in ovary.

View Article and Find Full Text PDF

Lymphangiogenesis is vital for tissue fluid homeostasis, immune function, and lipid absorption. Abnormal lymphangiogenesis has been implicated in several diseases such as cancers, inflammatory, and autoimmune diseases. In this study, we elucidate the role of tsRNA-0032 in lymphangiogenesis and its molecular mechanism.

View Article and Find Full Text PDF

Axons in the mammalian brain show significant diversity in myelination motifs, displaying spatial heterogeneity in sheathing along individual axons and across brain regions. However, its impact on neural signaling and susceptibility to injury remains poorly understood. To address this, we leveraged cable theory and developed model axons replicating the myelin sheath distributions observed experimentally in different regions of the mouse central nervous system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!