We hypothesized that PDGF-B/PDGFR-beta-signaling is important in the cardiac contribution of epicardium-derived cells and cardiac neural crest, cell lineages crucial for heart development. We analyzed hearts of different embryonic stages of both Pdgf-b-/- and Pdgfr-beta-/- mouse embryos for structural aberrations with an established causal relation to defective contribution of these cell lineages. Immunohistochemical staining for alphaSMA, periostin, ephrinB2, EphB4, VEGFR-2, Dll1, and NCAM was performed on wild-type and knockout embryos. We observed that knockout embryos showed perimembranous and muscular ventricular septal defects, maldevelopment of the atrioventricular cushions and valves, impaired coronary arteriogenesis, and hypoplasia of the myocardium and cardiac nerves. The abnormalities correspond with models in which epicardial development is impaired and with neuronal neural crest-related innervation deficits. This implies a role for PDGF-B/PDGFR-beta-signaling specifically in the contribution of these cell lineages to cardiac development.

Download full-text PDF

Source
http://dx.doi.org/10.1002/dvdy.21436DOI Listing

Publication Analysis

Top Keywords

cell lineages
12
cardiac development
8
contribution cell
8
knockout embryos
8
cardiac
6
pdgf-b signaling
4
signaling murine
4
murine cardiac
4
development
4
development role
4

Similar Publications

Neurodegenerative diseases are characterized by progressive loss of neurons and persistent inflammation. Neurons are terminally differentiated cells, and lost neurons cannot be replaced since neurogenesis is restricted to only two neurogenic niches in the adult brain, whose neurogenic potential decreases with age. In this regard, the astrocytes reprogramming into neurons may represent a promising strategy for restoring the lost neurons and rebuilding neural circuits.

View Article and Find Full Text PDF

The simultaneous sequencing of multiple types of biomolecules can facilitate understanding various forms of regulation occurring in cells. Cosequencing of miRNA and mRNA at single-cell resolution is challenging, and to date, only a few such studies (examining a quite limited number of cells) have been reported. Here, we developed a parallel single-cell small RNA and mRNA coprofiling method (PSCSR-seq V2) that enables miRNA and mRNA coexpression analysis in many cells.

View Article and Find Full Text PDF

Placental alkaline phosphatase (PLAP): Is it exclusively placental?

Placenta

January 2025

Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA. Electronic address:

Background: Adverse pregnancies outcomes present a clinical dilemma in Perinatal medicine. This is partly due to lack of accuracy of current biomarkers to predict high-risk pregnancies at an earlier stage. The placental alkaline phosphatase (PLAP) carrying extracellular vesicles (EVs), and their cargo have been reported as a source of biomarkers for placental health and an indication of pre-eclampsia progression.

View Article and Find Full Text PDF

Spatial transcriptomic characterization of a Carnegie stage 7 human embryo.

Nat Cell Biol

January 2025

Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.

Gastrulation marks a pivotal stage in mammalian embryonic development, establishing the three germ layers and body axis through lineage diversification and morphogenetic movements. However, studying human gastrulating embryos is challenging due to limited access to early tissues. Here we show the use of spatial transcriptomics to analyse a fully intact Carnegie stage 7 human embryo at single-cell resolution, along with immunofluorescence validations in a second embryo.

View Article and Find Full Text PDF

Fate mapping in mouse demonstrates early secretory differentiation directly from Lgr5+ intestinal stem cells.

Dev Cell

January 2025

Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark. Electronic address:

The intestinal epithelium has a remarkably high turnover in homeostasis. It remains unresolved how this is orchestrated at the cellular level and how the behavior of stem and progenitor cells ensures tissue maintenance. To address this, we combined quantitative fate mapping in three complementary mouse models with mathematical modeling and single-cell RNA sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!