Aims: In-stent restenosis is related to neointimal hyperplasia. Heating reduces neointimal hyperplasia but promotes constrictive remodeling after balloon angioplasty. We aimed to assess the ability of local heating in inhibiting restenosis and in-stent neointimal hyperplasia and its potential side effects on arterial thrombosis.

Methods And Results: Atherosclerotic-like lesions were induced in iliac rabbit arteries. One month later, both iliac rabbit arteries were stented. In each animal, one artery was randomized to local heating at four temperatures (50, 60, 80, and 100 degrees C). The contra lateral artery was used as control. Angiographic and histomorphometric analysis were performed 42 days after angioplasty. Immunohistochemistry was performed 3, 15, and 42 days after angioplasty. Angiographic significant reduction of in-stent restenosis after moderate heating (50 degrees C) was related to in-stent neointimal hyperplasia trend to be lower after moderate local heating when compared with controls. In contrast, in-stent thrombosis was similar to controls. Higher temperatures (i.e. 80 and 100 degrees C) also reduced in-stent neointimal hyperplasia but were most frequently associated with severe in-stent thrombosis. Local heating was associated with decreased cell proliferation, collagen density, and increased smooth muscle cell apoptosis and heat shock protein expression.

Conclusion: Moderate heating represents a promising approach to prevent in-stent restenosis via the limitation of the proliferative response without thrombosis induction.

Download full-text PDF

Source
http://dx.doi.org/10.1093/eurheartj/ehm596DOI Listing

Publication Analysis

Top Keywords

neointimal hyperplasia
24
local heating
20
in-stent neointimal
16
in-stent restenosis
12
in-stent
9
restenosis in-stent
8
iliac rabbit
8
rabbit arteries
8
temperatures 100
8
100 degrees
8

Similar Publications

In-stent restenosis (ISR) following interventional therapy is a fatal clinical complication. Current evidence indicates that neointimal hyperplasia driven by uncontrolled proliferation of vascular smooth muscle cells (VSMC) is a major cause of restenosis. This implies that inhibiting VSMC proliferation may be an attractive approach for preventing in-stent restenosis.

View Article and Find Full Text PDF

Modification of polylactic acid (PLA) is a promising strategy for the next generation of bioresorbable vascular stent biomaterials. With this focus, FeMOFs nanoparticles was incorporated in PLA, and then post loading of carbon monoxide (CO) was performed by pressurization. It showed FeMOFs incorporation increased hydrophilicity of the surface and CO loading, and CO release was sustained at least for 3 days.

View Article and Find Full Text PDF

Recurrent drug eluting stent, in-stent restenosis (DES-ISR): Epidemiology, pathophysiology & treatment.

Prog Cardiovasc Dis

January 2025

Division of Cardiovascular Medicine, Department of Medicine, University of Virginia Health System, 1215 Lee Street, Charlottesville, VA 22909, United States of America. Electronic address:

Coronary artery in-stent restenosis (ISR) is driven by neointimal hyperplasia and neo-atherosclerosis in previously placed stents. Drug eluting stents (DES) have been adopted as first line therapy for the initial episode of ISR. However, recurrent ISR has limited durable salvage options.

View Article and Find Full Text PDF

Background: Magnolia kobus DC (MO), as a plant medicine, has been reported to have various physiological activities, including neuroprotective, anti-inflammatory, and anti-diabetic effects. However, vascular protective effects of MO remain incompletely understood. In this study, we evaluated the vascular protective effect of MO against ferroptosis in a carotid artery ligation (CAL)-induced neointimal hyperplasia mouse model and in aortic thoracic smooth muscle A7r5 cells.

View Article and Find Full Text PDF

Background: Elective unprotected left main (ULM) percutaneous coronary intervention (PCI) has long-term mortality rates comparable to surgical revascularization, thanks to advances in drug-eluting stent (DES) design, improved PCI techniques, and frequent use of intravascular imaging. However, urgent PCI of ULM culprit lesions remains associated with high in-hospital mortality and unfavourable long-term outcomes, including DES restenosis and stent thrombosis (ST). This analysis aimed to examine the long-term outcomes and healing of DES implanted in ULM during primary PCI using high-resolution optical coherence tomography (OCT) imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!