Centrosomes nucleate and organize interphase microtubules and are instrumental in mitotic bipolar spindle assembly, ensuring orderly cell cycle progression with accurate chromosome segregation. We report that the multifunctional structural protein 4.1R localizes at centrosomes to distal/subdistal regions of mature centrioles in a cell cycle-dependent pattern. Significantly, 4.1R-specific depletion mediated by RNA interference perturbs subdistal appendage proteins ninein and outer dense fiber 2/cenexin at mature centrosomes and concomitantly reduces interphase microtubule anchoring and organization. 4.1R depletion causes G(1) accumulation in p53-proficient cells, similar to depletion of many other proteins that compromise centrosome integrity. In p53-deficient cells, 4.1R depletion delays S phase, but aberrant ninein distribution is not dependent on the S-phase delay. In 4.1R-depleted mitotic cells, efficient centrosome separation is reduced, resulting in monopolar spindle formation. Multipolar spindles and bipolar spindles with misaligned chromatin are also induced by 4.1R depletion. Notably, all types of defective spindles have mislocalized NuMA (nuclear mitotic apparatus protein), a 4.1R binding partner essential for spindle pole focusing. These disruptions contribute to lagging chromosomes and aberrant microtubule bridges during anaphase/telophase. Our data provide functional evidence that 4.1R makes crucial contributions to the structural integrity of centrosomes and mitotic spindles which normally enable mitosis and anaphase to proceed with the coordinated precision required to avoid pathological events.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2268423PMC
http://dx.doi.org/10.1128/MCB.02021-07DOI Listing

Publication Analysis

Top Keywords

protein 41r
12
41r depletion
12
cell cycle
8
cycle progression
8
mitotic spindles
8
41r
7
centrosomes
5
mitotic
5
spindles
5
depletion
5

Similar Publications

Cytokine expression in Treponema pallidum infection.

J Transl Med

June 2019

David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.

Background: Current syphilis tests cannot distinguish between active and past syphilis among patients with serofast rapid plasma reagin (RPR) titers. We investigated whether cytokine profiles might provide insight in the differentiation of active and treated syphilis.

Methods: We collected quarterly serum samples from participants at risk for incident syphilis in a prospective cohort study of men and male-to-female transgender women.

View Article and Find Full Text PDF

GSK3532795, formerly known as BMS-955176 (1), is a potent, orally active, second-generation HIV-1 maturation inhibitor (MI) that advanced through phase IIb clinical trials. The careful design, selection, and evaluation of substituents appended to the C-3 and C-17 positions of the natural product betulinic acid (3) was critical in attaining a molecule with the desired virological and pharmacokinetic profile. Herein, we highlight the key insights made in the discovery program and detail the evolution of the structure-activity relationships (SARs) that led to the design of the specific C-17 amine moiety in 1.

View Article and Find Full Text PDF

Infectious bursal disease virus protein VP4 suppresses type I interferon expression via inhibiting K48-linked ubiquitylation of glucocorticoid-induced leucine zipper (GILZ).

Immunobiology

February 2019

State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology and Zoonsis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China. Electronic address:

Viruses have developed a variety of methods to evade host immune response. Our previous study showed that infectious bursal disease virus (IBDV) inhibited type I interferon production via interaction of VP4 with cellular glucocorticoid-induced leucine zipper (GILZ) protein. However, the exact underlying molecular mechanism is still unclear.

View Article and Find Full Text PDF

Microfluidic assay of the deformability of primitive erythroblasts.

Biomicrofluidics

September 2017

Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York 14623, USA.

Primitive erythroblasts (precursors of red blood cells) enter vascular circulation during the embryonic period and mature while circulating. As a result, primitive erythroblasts constantly experience significant hemodynamic shear stress. Shear-induced deformation of primitive erythroblasts however, is poorly studied.

View Article and Find Full Text PDF

The lysophosphatidic acid receptor type 1 (LPA1) is 1 of 6 known receptors of the extracellular signaling molecule lysophosphatidic acid. It mediates effects such as cell proliferation, migration, and differentiation. In the lung, LPA1 is involved in pathways leading, after lung tissue injury, to pulmonary fibrosis instead of normal healing, by mediating fibroblast recruitment and vascular leakage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!