In the present study, we tested the role of CD63 in regulating ROMK1 channels by protein-tyrosine kinase (PTK). Immunocytochemical staining shows that CD63 and receptor-linked tyrosine phosphatase alpha (RPTPalpha) are expressed in the cortical collecting duct and outer medulla collecting duct. Immunoprecipitation of tissue lysates from renal cortex and outer medulla or 293T cells transfected with CD63 reveals that CD63 was associated with RPTPalpha both in situ and in transfected cells. Expression of CD63 in 293T cells stimulated the phosphorylation of tyrosine residue 416 of c-Src but decreased the phosphorylation of tyrosine residue 527, indicating that expression of CD63 stimulates the activity of c-Src. Furthermore, c-Src was coimmunoprecipitated with RPTPalpha and CD63 both in 293T cells transfected with CD63 and in lysates prepared from native rat kidney. Potassium restriction had no effect on the expression of RPTPalpha, but it increased the association between c-Src and RPTPalpha in the renal cortex and outer medulla. We also used two-electrode voltage clamp to study the effect of CD63 on ROMK channels in Xenopus oocytes. Expression of CD63 had no significant effect on potassium currents in oocytes injected with ROMK1; however, it significantly enhanced the c-Src-induced inhibition of ROMK channels in oocytes injected with ROMK1+c-Src. The effect of CD63 on the c-Src-induced inhibition was not due to a decreased expression of ROMK1 channels, because blocking PTK with herbimycin A abolished the inhibitory effect of c-Src on ROMK channels in oocytes injected with ROMK1+c-Src+CD63. Furthermore, coexpression of CD63 enhanced tyrosine phosphorylation of ROMK1. We conclude that CD63 plays a role in the regulation of ROMK channels through its association with RPTPalpha, which in turn interacts with and activates Src family PTK, thus reducing ROMK activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M705574200 | DOI Listing |
Am J Physiol Renal Physiol
January 2025
Department of Pharmacology, New York Medical College, Valhalla, NY.
Introduction: Milan hypertensive strain (MHS) of rat represents as one of the ideal rat models to study the genetic form of hypertension associated with aberrant renal salt reabsorption. In contrast to Milan normotensive strain (MNS), MHS rats possess missense mutations in three adducin genes and develop hypertension at 3 months old due to upregulation of sodium-chloride cotransporter (NCC). At pre-hypertensive stage (23-25 days old), MHS rats show enhanced protein abundance of Na+-K+-2Cl- cotransporter (NKCC2) but retain blood pressure comparable to MNS probably through enhanced GFR and reduced NCC and α-subunit of epithelial sodium channel (α-ENaC) expressed in distal convoluted tubule (DCT) and collecting duct (CD).
View Article and Find Full Text PDFPhysiol Rep
October 2024
Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
K secretion in the distal nephron has a critical role in K homeostasis and is the primary route by which K is lost from the body. Renal K secretion is enhanced by increases in dietary K intake and by increases in tubular flow rate in the distal nephron. This review addresses new and important insights regarding the mechanisms underlying flow-induced K secretion (FIKS).
View Article and Find Full Text PDFKidney Res Clin Pract
September 2024
Basic Medical Science College, Qiqihar Medical University, Qiqihar, China.
Background: This study investigates angiotensin II (Ang II)'s regulatory mechanism on renal outer medullary potassium channel (ROMK) activity in the distal convoluted tubule (DCT) during low potassium intake, focusing on the Janus kinase 2 (JAK2) pathway activation mediated by the Ang II type 1 receptor (AT1R).
Methods: Utilizing a low potassium diet mouse model, various methods including patch clamping, reverse transcription-quantitative polymerase chain reaction, Western blotting, and immunohistochemical staining were applied to analyze ROMK channel activity and the expression of related proteins.
Results: The findings reveal that Ang II inhibits ROMK activity in the DCT2 membrane through AT1R activation, with the JAK2 pathway playing a central role.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!