Biogenic volatile organic compounds (VOCs), such as isoprene and alpha-/beta-pinene, are photo-oxidized in the atmosphere to non-volatile species resulting in secondary organic aerosol (SOA). The goal of this study was to examine time trends and diel variations of oxidation products of isoprene and alpha-/beta-pinene in order to investigate whether they are linked with meteorological parameters or trace gases. Separate day-night aerosol samples (PM(1)) were collected in a Scots pine dominated forest in southern Finland during 28 July-11 August 2005 and analyzed with gas chromatography/mass spectrometry (GC/MS). In addition, inorganic trace gases (SO(2), CO, NO(x), and O(3)), meteorological parameters, and the particle number concentration were monitored. The median total concentration of terpenoic acids (i.e., pinic acid, norpinic acid, and two novel compounds, 3-hydroxyglutaric acid and 2-hydroxy-4-isopropyladipic acid) was 65 ng m(-3), while that of isoprene oxidation products (i.e., 2-methyltetrols and C(5) alkene triols) was 17.2 ng m(-3). The 2-methyltetrols exhibited day/night variations with maxima during day-time, while alpha-/beta-pinene oxidation products did not show any diel variation. The sampling period was marked by a relatively high condensation sink, caused by pre-existing aerosol particles, and no nucleation events. In general, the concentration trends of the SOA compounds reflected those of the inorganic trace gases, meteorological parameters, and condensation sink. Both the isoprene and alpha-/beta-pinene SOA products were strongly influenced by SO(2), which is consistent with earlier reports that acidity plays a role in SOA formation. The results support previous proposals that oxygenated VOCs contribute to particle growth processes above boreal forest.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-2007-964945 | DOI Listing |
Environ Pollut
February 2023
Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China. Electronic address:
The land-sea breeze circulation significantly impacts the atmospheric transport of organic aerosols in coastal regions. However, the links between organic aerosols and land-sea breezes remain poorly understood. In this study, organic marker compounds for biomass burning, primary biological aerosols, biogenic and anthropogenic secondary organic aerosols (SOA) in fine particles from a coastal city in East China were analysed using gas chromatography-mass spectrometry.
View Article and Find Full Text PDFChemosphere
January 2023
Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan; Chubu Institute for Advanced Studies, Chubu University, Kasugai, 487-8501, Japan. Electronic address:
We collected total suspended particulate (TSP) samples from January 2010 to December 2010 at Sapporo deciduous forest to understand the oxidation processes of biogenic volatile organic compounds (BVOCs). The gas chromatography-mass spectrometric technique was applied to determine biogenic secondary organic aerosols (BSOAs) in the TSP samples. We found the predominance of the isoprene SOA (iSOA) tracers (20.
View Article and Find Full Text PDFSecondary organic aerosols (SOA) are important atmospheric pollutants that affect air quality, radiation, and human health. In this study, 14 typical SOA tracers were measured in PM collected from three central cities of the Yangtze River Delta (YRD) region in the winter of 2014 and the summer of 2015. Among the determined SOA tracers, α/β-pinene SOA tracers contributed 55.
View Article and Find Full Text PDFEnviron Res
April 2021
Department of Chemistry, Government Engineering College, Sejbahar, Raipur, Chhattisgarh, India.
Samples of ambient aerosols were collected at an urban site of eastern central India from monsoon to summer 2016-17 for the characterization of biogenic secondary organic aerosols (BSOA). The BSOA tracers derived from isoprene, α/β-pinene and β-caryophyllene in size-distributed aerosols were studied. Concentrations of total SOAI (Isoprene secondary organic aerosols) were found more abundant than α/β-pinene in summer, while contradictory trends were found in the winter season, where SOAM (monoterpene derived SOA) and SOAS (sesquiterpenes derived SOA) were dominated.
View Article and Find Full Text PDFSci Total Environ
February 2019
Environmental Monitoring Center of Fujian, Fuzhou 350003, China.
Secondary organic aerosol (SOA) plays an important role in global climate change and air quality. PM (particles with aerodynamic diameters ≤2.5 μm) samples were collected at a mountainous forest site (Mt.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!