In this paper, several approaches which allow the investigation of mixtures of polymorphs, employing modern solid-state NMR (SS NMR) spectroscopy are reported. A convenient methodology for characterization of the hydrogen bonding and molecular conformation of a polymorphic sample by means of one-dimensional and two-dimensional, 13C and 15N NMR experiments as well as CSA tensor analysis and theoretical calculations is presented. Two-dimensional heteronuclear SS NMR allowed definition of the polymorphic domain of N-benzoyl-L-phenylalanine (N-Bz-Phe). The graphical method of Herzfeld and Berger was used to measure the 13C and 15N spinning sideband intensities which allowed the calculation of NMR parameters for labeled centers of N-Bz-Phe. The experimental data were compared with computed results obtained by means of the DFT hybrid method with B3PW91 functional and 6-311++G** basis set.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp073428u | DOI Listing |
Inorg Chem
January 2025
State Key Laboratory of Molecular & Process Engineering, SINOPEC Research Institute of Petroleum Processing, Beijing 100083, China.
The ZSM-5 zeolite is the key active component in high-severity fluid catalytic cracking (FCC) catalysts and is routinely activated by phosphorus compounds in industrial production. To date, however, the detailed structure and function of the introduced phosphorus still remain ambiguous, which hampers the rational design of highly efficient catalysts. In this work, using advanced solid-state NMR techniques, we have quantitatively identified a total of seven types of P-containing complexes in P-modified ZSM-5 zeolite and clearly revealed their structure, location, and catalytic role.
View Article and Find Full Text PDFNoncovalent carbon bonding (C-bonding), a recently explored σ-hole interaction, has primarily been characterized through X-ray structural and computational studies. Evidence of C-bonds in solution is scarce, especially in highly polar solvents like DMSO where solvation effects typically overshadow weak non-covalent interactions. In this work, we present three novel spiroisatin-based -acyl hydrazones (1-3) in which C-bonds play a critical role in stabilizing the conformation in solution.
View Article and Find Full Text PDFBiomacromolecules
January 2025
BioComposites Centre, Bangor University, Bangor LL57 2UW, U.K.
Wood modification using low molecular weight thermosetting resins improves the biological durability and dimensional stability of wood while avoiding increasingly regulated biocides. During the modification process, resin monomers diffuse from the cell lumen to the cell wall, occupying micropore spaces before curing at 150 °C. This study investigated the mechanism of cell wall diffusion at multiple scales, comparing two test groups where diffusion was either facilitated or restricted.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China.
Physisorption presents a promising alternative to cryogenic distillation for capturing the most potent greenhouse gas, SF, but existing adsorbents face challenges in meeting diverse chemical and engineering concerns. Herein, with insights into in-pore chemistry and industrial process design, we report a systematic investigation that constructed two low-cost composites pellets (Al(fum)@2%HPC and Al(fum)@5%Kaolin) coupled with an innovative two-stage Vacuum Temperature Swing Adsorption (VTSA) process for the ultra-efficient recovery of low-concentration SF from N. Record-high selectivities (> 2×10) and SF dynamic capacities (~ 2.
View Article and Find Full Text PDFTalanta
January 2025
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China. Electronic address:
Polymers and dendrimers are macromolecules, possessing unique and intriguing characteristics, that are widely applied in self-assembled functional materials, green catalysis, drug delivery and sensing devices. Traditional approaches for the structural characterization of polymers and dendrimers involve DLS, GPC, NMR, IR and TG, which provide their physiochemical features and ensemble information, whereas their unimolecular conformation and dispersion also are key features allowing to understand their transporting profile in confined ionic nanochannels. This work demonstrates the nanopore approach for the determination of charged homopolymers, neutral block copolymer and dendrimers under distinct bias potentials and pH conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!