Blackberries ( Rubus sp.) were evaluated by high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF-MS) to identify the ellagitannins present in flesh, torus (receptacle tissue), and seeds. Most ellagitannins were present (or detectable) only in seed tissues. Ellagitannins identified by HPLC-ESI-MS in the seeds included pedunculagin, casuarictin/potentillin, castalagin/vescalagin, lambertianin A/sanguiin H-6, lambertianin C, and lambertianin D. For several of the ellagitannins, isomeric separation was also obtained. The MALDI-TOF-MS analysis was primarily utilized to evaluate and identify high molecular mass (>1000 Da) ellagitannins. The MALDI analysis verified the presence of the ellagitannins identified by HPLC-ESI-MS including lambertianin A/sanguiin H-6, lambertianin C, and lambertianin D, but the analysis also indicated the presence of several other compounds that were most likely ellagitannins based on the patterns observed in the masses (i.e., loss or addition of a gallic acid moiety to a known ellagitannin). This study determined the presence of several possible isomeric forms of ellagitannins previously unidentified in fruit and presents a possible analytical HPLC method for the analysis of the major ellagitannins present in the fruit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf071990b | DOI Listing |
Drug Des Devel Ther
January 2025
Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, People's Republic of China.
Background: Corilagin is widely distributed in various medicinal plants. In recent years, numerous pharmacological activities of Corilagin have been reported, including anti-inflammatory, antiviral, hepatoprotective, anti-tumor, and anti-fibrosis effects. However, there is still a need for systematic metabolomics analysis to further elucidate its mechanisms of action.
View Article and Find Full Text PDFTissue Cell
December 2024
Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea. Electronic address:
Urolithin A (URA), a product of the gut microflora from foods rich in ellagitannins found in berries and nuts, has demonstrated anti-inflammatory and antioxidative stress properties in various disease models. Ferroptosis, an iron-dependent form of cell death, is considered a pathogenic cause of tendinopathy. However, the effects of URA on hyperlipidemic tenocytes and the related molecular mechanisms for the treatment of tendinopathy have not been elucidated.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genova, Italy.
Oxidative stress (OS), generated by the overrun of reactive species of oxygen and nitrogen (RONS), is the key cause of several human diseases. With inflammation, OS is responsible for the onset and development of clinical signs and the pathological hallmarks of Alzheimer's disease (AD). AD is a multifactorial chronic neurodegenerative syndrome indicated by a form of progressive dementia associated with aging.
View Article and Find Full Text PDFFoods
January 2025
Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos-LaNAEPBi, Unidad de Servicio Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Valles, Ciudad Valles 79010, San Luis Potosí, Mexico.
This study evaluated the antioxidant efficacy of ellagitannins from a pomegranate husk in preventing vegetable canola oil (VCO) oxidation during French fry preparation. Ellagitannins were extracted using 80% acetone, purified via Amberlite XAD-16 resin chromatography, and incorporated into VCO at 0.05%, 0.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Pharmacology & Therapeutics, McGill University, 3655 Prom. Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada.
Urolithin A (uroA) is a polyphenol derived from the multi-step metabolism of dietary ellagitannins by the human gut microbiota. Once absorbed, uroA can trigger mitophagy and aryl hydrocarbon receptor signaling pathways, altering host immune function, mitochondrial health, and intestinal barrier integrity. Most individuals harbor a microbiota capable of uroA production; however, the mechanisms underlying the dehydroxylation of its catechol-containing precursor (uroC) are unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!