Background: Atrial fibrillation (AF) is the most common cardiac rhythm disorder with a lifetime risk for development of 25% for people aged 40 or older. In this study we aim for the functional assessment of a mutation in KCNE3 identified in a proband with early-onset lone AF.
Methods: Screening of genomic DNA from the proband led to identification of a KCNE3 V17M missense mutation. We heterologously expressed the accessory channel subunit in Xenopus laevis oocytes together with its known interacting potassium channel alpha-subunits. Further, we applied RT-PCR on human total RNA from left and right atria and ventricle.
Results: Electrophysiological recordings revealed an increased activity of Kv4.3/KCNE3 and Kv11.1/KCNE3 generated currents by the mutation, thereby conferring susceptibility of mutation carriers to faster cardiac action potential repolarization and thus vulnerability to re-entrant wavelets in the atria and thereby AF.
Conclusion: Here we report a novel mutation in KCNE3 identified in a proband with early-onset lone AF possibly leading to gain-of-function of several cardiac currents. We suggest abnormalities in the KCNE3 gene as a potential genetic risk factor for initiation and/or maintenance of AF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000113746 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!