Objectives: To use multiphoton microscopy to image collagen fibers and matrix structure in nonfixed human keloid tissue and normal human facial skin obtained following surgery and to compare the findings to existing knowledge of normal skin and keloid morphology to determine if this technology is a suitable adjunct for conventional histology.
Methods: Epidermis was removed to expose the fibroblast-rich dermal layer that was then imaged using a multiphoton confocal microscope (Zeiss-Meta 510; Carl Zeiss, Jena, Germany). An 800-nm tunable titanium/sapphire femtosecond laser (Mai-Tai; Newport Co Spectra-Physics, Mountain View, California) was used to excite the tissue; second harmonic generation between 397 and 408 nm and autofluorescent signals were collected. Images were obtained using a Plan-Neofluar x40 oil immersion objective lens and a Plan-Apochromat x63 oil immersion lens.
Results: Compared with normal skin, keloids showed disorganized collagen fibers arranged in complex swirls and bundles 20 to 30 microm in diameter. Normal tissue showed collagen fibers as distinct, straight strands less than 10 microm in diameter. Differences between normal and keloid tissue were subtle but apparent.
Conclusions: The value of imaging living tissue is a significant benefit. Because keloids and hypertrophic scars result from altered collagen metabolism, the development of clinical multiphoton microscopy systems may allow examination of wound healing dynamics in vivo and potentially provides a means to monitor therapy without the need for biopsy or the risk of injury to tissue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4144461 | PMC |
http://dx.doi.org/10.1001/archfacial.2007.18 | DOI Listing |
J Mol Cell Cardiol
December 2024
A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland; Heart Centre and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland. Electronic address:
Background: Coronary stenting operations have become the main option for the treatment of coronary heart disease. Vessel recovery after stenting has emerged as a critical factor in reducing possible complications. In this study, we evaluated the feasibility, safety and efficacy of locally administered intraluminal gene therapy delivered using a specialized infusion balloon catheter.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States.
Nat Commun
January 2025
Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA.
Optical aberrations hinder fluorescence microscopy of thick samples, reducing image signal, contrast, and resolution. Here we introduce a deep learning-based strategy for aberration compensation, improving image quality without slowing image acquisition, applying additional dose, or introducing more optics. Our method (i) introduces synthetic aberrations to images acquired on the shallow side of image stacks, making them resemble those acquired deeper into the volume and (ii) trains neural networks to reverse the effect of these aberrations.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
Accurate diagnosis and assessment of breast cancer treatment responses are critical challenges in clinical practice, influencing patient treatment strategies and ultimately long-term prognosis. Currently, diagnosing breast cancer and evaluating the efficacy of neoadjuvant immunotherapy (NAIT) primarily rely on pathological identification of tumor cell morphology, count, and arrangement. However, when tumors are small, the tumors and tumor beds are difficult to detect; relying solely on tumor cell identification may lead to false negatives.
View Article and Find Full Text PDFBiotechniques
January 2025
Biomedical Engineering, The University of Arizona, Tucson, AZ, USA.
Current dorsal skin flap window chambers with flat glass windows are compatible with optical coherence tomography (OCT) and multiphoton microscopy (MPM) imaging. However, light sheet fluorescence microscopy (LSFM) performs best with a cylindrical or spherical sample located between its two 90° objectives and when all sample materials have the same index of refraction (). A modified window chamber with a domed viewing window made from fluorinated ethylene propylene (FEP), with n similar to water and tissue, was designed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!