Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The neuroprotective effects of oestrogens have been demonstrated against a variety of insults, including excitotoxicity, oxidative stress and cerebral ischemia under certain conditions. However, the molecular mechanisms underlying oestrogen neuroprotection are still unclear. We aimed to determine whether 17beta-oestradiol (E(2)) administration post-hypoxia (p-hx) was neuroprotective and whether these actions were mediated through oestrogen receptors (ER). For this purpose, 12-embyonic day-old chickens were subjected to acute hypoxia [8% (O(2)), 60 min], followed by different reoxygenation periods. To test the neuroprotective effect of E(2) and its mechanism, embryos were injected 30 min after the end of hypoxia with E(2) alone or with ICI 182 780, a competitive antagonist of ER. Cytochrome c (cyt c) release, an indicator of mitochondrial apoptotic pathway, was measured by western blot in optic lobe cytosolic extracts. DNA fragmentation by TUNEL fluorescence and caspase-3 fragmentation by immunofluorescence were detected on optic lobe sections. Acute hypoxia produces a significant increase in cyt c release from mitochondria at 4 h p-hx, followed by an increase in TUNEL positive cells 2 h later (6 h p-hx). Administration of E(2) (0.5 mg/egg) produced a significant decrease in cytosolic cyt c levels at 4 h p-hx, in caspase-3 activation and in TUNEL positive cells at 6 h p-hx compared to vehicle treated embryos. In the E(2)-ICI 182 780 treated embryos, cyt c release, caspase-3 fragmentation and TUNEL positive cells were similar to the hypoxic embryos, thus suggesting the requirement of an E(2)-ER interaction for E(2) mediated neuroprotective effects. In conclusion, E(2) prevents hypoxia-induced cyt c release and posterior cell death and these effects are mediated by oestrogen receptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2826.2008.01652.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!