Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Enzyme kinetic parameters can differ between different species and isoenzymes for the same catalysed reaction. Computational approaches to calculate enzymatic kinetic parameters from the three-dimensional structures of proteins will be reviewed briefly here. Enzyme kinetic parameters may be derived by modelling and simulating the rate-determining process. An alternative, approximate, but more computationally efficient approach is the comparison of molecular interaction fields for experimentally characterized enzymes and those for which parameters should be determined. A correlation between differences in interaction fields and experimentally determined kinetic parameters can be used to determine parameters for orthologous enzymes from other species. The estimation of enzymatic kinetic parameters is an important step in setting up mathematical models of biochemical pathways in systems biology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BST0360051 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!