Studies on HIV-1 mucosal transmission to evaluate early events in pathogenesis and the development of effective preventive/prophylactic methods have thus far been hampered by the lack of a suitable animal model susceptible to HIV-1 infection by either vaginal and/or rectal routes. In this regard, while primate-SIV/SHIV and cat-FIV models provided useful surrogate platforms to derive comparative data, these viruses are distinct and different from that of HIV-1. Therefore an optimal model that permits direct study of HIV-1 transmission via mucosal routes is highly desirable. The new generation of humanized NOD/SCID BLT, NOD/SCIDgammac(-/-), and Rag2(-/-)gammac(-/-) mouse models show great promise to achieve this goal. Here, we show that humanized Rag2(-/-)gammac(-/-) mice (RAG-hu) engrafted with CD34 hematopoietic progenitor cells harbor HIV-1-susceptible human cells in the rectal and vaginal mucosa and are susceptible to HIV-1 infection when exposed to cell-free HIV-1 either via vagina or rectum. Infection could be established without any prior hormonal conditioning or mucosal abrasion. Both R5 and X4 tropic viruses were capable of mucosal infection resulting in viremia and associated helper T cell depletion. There was systemic spread of the virus with infected cells detected in different organs including the intestinal mucosa. R5 virus was highly efficient in mucosal transmission by both routes whereas X4 virus was relatively less efficient in causing infection. HIV-1 infection of RAG-hu mice by vaginal and rectal routes as shown here represents the first in vivo model of HIV-1 transmission across intact mucosal barriers and as such may prove very useful for studying early events in HIV-1 pathogenesis in vivo, as well as the testing of microbicides, anti-HIV vaccines/therapeutics, and other novel strategies to prevent HIV-1 transmission.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3092740 | PMC |
http://dx.doi.org/10.1016/j.virol.2007.11.020 | DOI Listing |
J Clin Invest
January 2025
Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou, China.
The persistent emergence of COVID-19 variants and recurrent waves of infection worldwide underscores the urgent need for vaccines that effectively reduce viral transmission and prevent infections. Current intramuscular (IM) COVID-19 vaccines inadequately protect the upper respiratory mucosa. In response, we have developed a nonadjuvanted, interferon-armed SARS-CoV-2 fusion protein vaccine with IM priming and intranasal (IN) boost sequential immunization.
View Article and Find Full Text PDFJ Virol Methods
January 2025
Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), via Bianchi 9, Brescia 24125, Italy. Electronic address:
Lumpy skin disease (LSD), caused by the LSD virus (LSDV) from the Capripoxvirus genus, affects cattle, water buffalo, and wild bovines, leading to significant economic losses. Characterised by fever, skin nodules, and mucosal lesions, LSD raises global concerns due to vector-borne transmission. The World Organisation for Animal Health (WOAH) classifies LSD as a notifiable disease, emphasising the need for rapid diagnostic methods for timely disease confirmation and control.
View Article and Find Full Text PDFAm J Vet Res
January 2025
Infectious Disease Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA.
Objective: To describe the prevalence, clinical findings, lesions, and risk factors associated with chlamydial infections in free-ranging raptors presented to a university veterinary medical teaching hospital.
Methods: Medical records retrospectively searched for raptors admitted from January 1993 through April 2022 were tested for Chlamydia spp infections using quantitative PCR (qPCR), immunohistochemistry, culture, and sequencing. Findings were collected and analyzed.
Viruses
December 2024
Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland.
Bovine viral diarrhea virus (BVDV), a pestivirus in the family , is a major livestock pathogen. Horizontal transmission leads to acute transient infections via the oronasal route, whereas vertical transmission might lead to the birth of immunotolerant, persistently infected animals. In both cases, BVDV exerts an immunosuppressive effect, predisposing infected animals to secondary infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!