Early maturation of GABAergic synapses in mouse retinal ganglion cells.

Int J Dev Neurosci

Developmental Neurobiology, Max-Delbrück-Center, Robert-Rössle-Str. 10, 13092 Berlin, Germany.

Published: April 2008

This study was aimed to characterize the earliest phases of synapse development in mouse retinal ganglion cells (RGCs) by recording spontaneous postsynaptic currents (PSCs). First PSCs were detected at embryonic day 17 and completely suppressed by bicuculline, demonstrating their GABAergic nature. Starting from postnatal day 3 a small fraction of RGCs had rapidly decaying, most likely glutamatergic currents. The present results suggest that functional GABAergic synapses with RGCs appear before birth and that GABAergic synaptic transmission precedes that of glutamate in the retina. In this early period GABA acts in a depolarizing manner and takes over an excitatory function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijdevneu.2007.12.001DOI Listing

Publication Analysis

Top Keywords

gabaergic synapses
8
mouse retinal
8
retinal ganglion
8
ganglion cells
8
early maturation
4
gabaergic
4
maturation gabaergic
4
synapses mouse
4
cells study
4
study aimed
4

Similar Publications

Background/objectives: Internalizing disorders, including depression and anxiety, are major contributors to the global burden of disease. While the genetic architecture of these disorders in adults has been extensively studied, their early-life genetic mechanisms remain underexplored, especially in non-European populations. This study investigated the genetic mechanisms underlying internalizing symptoms in a cohort of Latin American children.

View Article and Find Full Text PDF

A global overview of shared genetic architecture between smoking behaviors and major depressive disorder in European and East Asian ancestry.

J Affect Disord

January 2025

Department of Environmental Genomics, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China. Electronic address:

Background: The co-occurrence of smoking behaviors and major depressive disorder (MDD) has been widely documented in populations. However, the underlying mechanism of this association remains unclear.

Methods: Genome-wide association studies of smoking behaviors and MDD, combined with multi-omics datasets, were usedto characterise genetic correlations, identify shared loci and genes, and explore underlying biological mechanisms.

View Article and Find Full Text PDF

Impacts of hnRNP A1 Splicing Inhibition on the Brain Remyelination Proteome.

J Neurochem

January 2025

Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.

Oligodendrocytes, the myelinating cells in the central nervous system, are implicated in several neurological disorders marked by dysfunctional RNA-binding proteins (RBPs). The present study aimed at investigating the role of hnRNP A1 in the proteome of the corpus callosum, prefrontal cortex, and hippocampus of a murine cuprizone-induced demyelination model. Right after the cuprizone insult, we administered an hnRNP A1 splicing activity inhibitor and analyzed its impact on brain remyelination by nanoESI-LC-MS/MS label-free proteomic analysis to assess the biological processes affected in these brain regions.

View Article and Find Full Text PDF

Cannabinoid receptor 1 (CB1) regulates synaptic transmission through presynaptic receptors in nerve terminals, and its physiological roles are of clinical relevance. The cellular sources and synaptic targets of CB1-expressing terminals in the human cerebral cortex are undefined. We demonstrate a variable laminar pattern of CB1-immunoreactive axons and electron microscopically show that CB1-positive GABAergic terminals make type-2 synapses innervating dendritic shafts (69%), dendritic spines (20%) and somata (11%) in neocortical layers 2-3.

View Article and Find Full Text PDF

The human hippocampus, essential for learning and memory, is implicated in numerous neurological and psychiatric disorders, each linked to specific neuronal subpopulations. Advancing our understanding of hippocampal function requires computational models grounded in precise quantitative neuronal data. While extensive data exist on the neuronal composition and synaptic architecture of the rodent hippocampus, analogous quantitative data for the human hippocampus remain very limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!