Early loosening and implant migration are two problems that lead to failures in cementless (press-fit) femoral knee components of total knee replacements. To begin to address these early failures, this study determined the anterior-posterior mechanical properties from four locations in the human distal femur. Thirty-three cylindrical specimens were removed perpendicular to the press-fit surface after the surgical cuts on 10 human cadaveric femurs (age 71.5+/-14.2 years) had been made. Compression testing was performed that utilized methods to reduce the effects of end-artifacts. The bone mineral apparent density (BMAD), apparent modulus of elasticity, yield and ultimate stress, and yield and ultimate strain were measured for 28 cylindrical specimens. The apparent modulus, yield and ultimate stress, and yield and ultimate strain each significantly differed (p<0.05) in the superior and inferior locations. Linear and power law relationships between superior and inferior mechanical properties and BMAD were determined. The inferior apparent modulus and stresses were higher than those in the superior locations. These results show that the press-fit fixation characteristics of the femoral knee component differ on the anterior shield and posterior condyles. This information will be useful in the assignment of mechanical properties in finite element models for further investigations of femoral knee components. The property-density relations also have applications for implant design and preoperative assessment of bone strength using clinically available tools.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiomech.2007.11.018 | DOI Listing |
Sci Rep
January 2025
Department of Chemistry, Usmanu Danfodiyo University, Sokoto, Nigeria.
As global demand for fossil fuels rises amidst depleting reserves and environmental concerns, exploring sustainable and renewable energy sources has become imperative. This study investigated the pyrolysis of corncob, a widely available agricultural waste, using urea as a catalyst to enhance bio-oil production. The aim was to determine the optimum urea concentration and pyrolysis temperature for bio-oil yield from corncob.
View Article and Find Full Text PDFSmall
January 2025
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.
Fivefold twins are extensively present in nanoparticles and nanowires, enhancing their performance in physical, chemical, and mechanical properties. However, a deep insight into the correlation between mechanical properties and fivefold twins in bulk nanograined materials is lacking due to synthesis difficulties. Here, a bulk fivefold-twinned nanograined Ni is synthesized via electrodeposition.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.
We describe a stereoselective synthesis of the dimeric diazofluorene , a potential precursor to the cytotoxic -symmetric bacterial metabolite (-)-lomaiviticin A (). An efficient route was developed to convert the tetracyclic diol to the diketone (five steps, 30% overall). Oxidative dimerization of the enoxysilane provided the -symmetric dimeric diazofluorene in 56% yield and with 15:1:0 diastereoselectivity.
View Article and Find Full Text PDFBackground And Aims: Hematopoietic stem cell transplantation (HSCT) is a key therapeutic approach for pediatric patients with hematologic and non-hematologic disorders. However, post-transplant pulmonary complications remain a significant cause of morbidity and mortality. Pulmonary Function Tests (PFTs) are essential for the early detection of pulmonary dysfunction, yet their application in pediatric HSCT recipients has yielded inconsistent results.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Horticulture, Agricultural Faculty, Kahramanmaras Sutcu Imam University, Kahramanmaras, 46040, Türkiye.
Background: Walnut (Juglans regia L.) breeding programs aim to develop new genotypes that exhibit superior agronomic traits, including high yield, improved nut quality, and favorable phenological traits. One of the primary methods used in these programs is hybridization, which involves controlled crosses between selected parent varieties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!