The electrostatic V+(OCO) complex has a vibrationally resolved photodissociation spectrum in the visible. Photodissociation produces V+ + CO2 (nonreactive pathway) and VO+ +CO (reactive pathway). Production of VO+ is energetically favored, but spin forbidden. One-photon dissociation studies confirm mode selectivity observed by Lessen et al. [J. Chem. Phys. 95, 1414 (1991)]: excitation of one quantum of rocking motion enhances VO+ production by >30%. Branching ratio measurements in one-photon dissociation are extended to higher energy. The effect of OCO antisymmetric stretch vibrations on reactivity is investigated using vibrationally mediated photodissociation, in which the OCO antisymmetric stretch is excited at 2390.9 cm(-1). Vibrationally excited molecules are then dissociated in the visible. Seven vibronic bands are investigated, involving the antisymmetric stretch alone and in combination with the CO2 bend, the V+(OCO) stretch and rock. Exciting the antisymmetric stretch leads to a approximately 15% increase in the reactive VO+ channel, compared to other states at similar energy. Combination bands involving the antisymmetric stretch all show slightly higher reactivity. Electronic structure calculations were performed to characterize the dissociation pathways and excited electronic states of V+(OCO). The geometries of reactants, products, and transition states and relative energies of quintet and triplet states were determined using hybrid density functional theory; energies were also calculated using the coupled cluster with single, double and perturbative triple excitations method. In addition, time-dependent density functional theory calculations were performed to predict the excited electronic states of quintet and triplet V+(OCO). Spin-orbit coupling of quintet states to triplet states was calculated and used to compute intersystem crossing rates, which reproduce many of the observed mode selective trends. The V+--OCO stretch and OCO antisymmetric stretch appear to enhance reactivity by increasing the intersystem crossing rate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2818564 | DOI Listing |
J Chem Phys
January 2025
Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
Two-dimensional (2D) vibrational spectroscopy is a powerful means of investigating the structure and dynamics of complex molecules in condensed phases. However, even in theory, analysis of 2D spectra resulting from complex inter- and intra-molecular motions using only molecular dynamics methods is not easy. This is because molecular motions comprise complex multiple modes and peaks broaden and overlap owing to various relaxation processes and inhomogeneous broadening.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, People's Republic of China.
With the continuous development of digital information and big data technologies, the ambient temperature and heat generation during the operation of magnetic storage devices play an increasingly crucial role in ensuring data security and device stability. In this study, we conducted a thorough investigation on in-plane lattice thermal conductivity of the van der Waals (vdWs) magnetic semiconductor CrSBr from bulk to monolayer using first-principles calculations and phonon Boltzmann transport equation. Our findings indicated that CrSBr show strong anisotropic thermal transport behaviors and layer number and magnetic ordering dependent lattice thermal conductivity.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Abteilung für Molekulare Physikalische Chemie, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Wegelerstraße 12, 53115 Bonn, Germany.
The binding of carbon dioxide to a transition metal is a complex phenomenon that involves a major redistribution of electron density between the metal center and the triatomic ligand. The chemical reduction of the ligand reveals itself unambiguously by an angular distortion of the CO-molecule as a result of the occupation of an anti-bonding π-orbital and a shift of its antisymmetric stretching vibration, ν, to lower wavenumbers. Here, we generate a carbon dioxide complex of the heavier group-10 metal, platinum, by ultrafast electronic excitation and cleavage of CO from the photolabile oxalate precursor, oxaliplatin, and monitored the ensuing primary dynamics with ultrafast mid-infrared spectroscopy.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Furman University, Greenville, South Carolina 29613, United States.
Surface-anchored metal-organic frameworks (surMOFs) are crystalline, nanoporous, supramolecular materials mounted to substrates that have the potential for integration within device architectures relevant for a variety of electronic, photonic, sensing, and gas storage applications. This research investigates the thin film formation of the Cu-BDC (copper benzene-1,4-dicarboxylate) MOF system on a carboxylic acid-terminated self-assembled monolayer by alternating deposition of solution-phase inorganic and organic precursors. X-ray diffraction (XRD) and atomic force microscopy (AFM) characterization demonstrate that crystalline Cu-BDC thin films are formed via Volmer-Weber growth.
View Article and Find Full Text PDFJ Membr Biol
February 2025
Faculty of Science, Department of Physics, Ege University, 35100, Bornova, Izmir, Turkey.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!