In a recent paper [Aschi et al., ChemPhysChem 6, 53 (2005)], we characterized, by means of theoretical-computational procedures, the electronic excitation of water along the typical liquid state isochore (55.32 mol/l) for a large range of temperature. In that paper we were able to accurately reproduce the experimental absorption maximum at room temperature and to provide a detailed description of the temperature dependence of the excitation spectrum along the isochore. In a recent experimental work by Marin et al. [J. Chem. Phys. 125, 104314 (2006)], water electronic excitation energy was carefully analyzed in a broad range of density and temperature, finding a remarkable agreement of the temperature behavior of the experimental data with our theoretical results. Here, by means of the same theoretical-computational procedures (molecular dynamics simulations and the perturbed matrix method), we investigate water electronic absorption exactly in the same density-temperature range used in the experimental work, hence, now considering also the absorption density dependence. Our results point out that, (1) for all the densities and temperatures investigated, our calculated absorption spectra are in very good agreement with the experimental ones and (2) the gradual maxima redshift observed increasing the temperature or decreasing the density has to be ascribed to a real shift of the lowest X-->A electronic transition, supporting the conclusions of Marin et al.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2826325 | DOI Listing |
Sci Rep
January 2025
Department of Electronic Engineering, Universidad Tecnica Federico Santa Maria, Valparaiso, Chile.
Assessing the health status of vegetation is of vital importance for all stakeholders. Multi-spectral and hyper-spectral imaging systems are tools for evaluating the health of vegetation in laboratory settings, and also hold the potential of assessing vegetation of large portions of land. However, the literature lacks benchmark datasets to test algorithms for predicting plant health status, with most researchers creating tailored datasets.
View Article and Find Full Text PDFSci Rep
January 2025
Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, Jilin, 132109, China.
It is challenging to achieve high-speed and accurate multicooperation of turtle-inspired amphibious spherical robots (ASRs) in turbid water and confined spaces when the robots are underwater movement with multiple degrees of freedom (MDOF). This paper innovatively proposes a control strategy for modelling and experimental platforms that can communicate and cooperate between multiple robots. First, a novel underwater kinematic model using the unit quaternion (UQ) algorithm is proposed based on attitude interpolation to realize MDOF movement.
View Article and Find Full Text PDFJ Prosthet Dent
January 2025
Professor, Department of Dentistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil. Electronic address:
Statement Of Problem: Staining at the gingival margin could impact denture longevity, but the behavior of gingival colored composite resins (GCCs) in this area remains unclear.
Purpose: This in vitro study evaluated surface staining, microleakage, and push-out bond strength at the gingival margin of artificial teeth, comparing two consistencies of GCCs with two resin base materials.
Material And Methods: Specimens included artificial teeth (Ivostar; Ivoclar AG) and two acrylic resin base materials: conventional (Ondacryl; Clássico) and high-impact (Diamond D; Keystone Industries) (n=300).
Trends Neurosci
January 2025
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA. Electronic address:
The evolution of vertebrates from protochordate ancestors marked the beginning of the gradual transition to predatory lifestyles. Enabled by the acquisition of multipotent neural crest and cranial placode cell populations, vertebrates developed an elaborate peripheral nervous system, equipped with paired sense organs, which aided in adaptive behaviors and ultimately, successful colonization of diverse environmental niches. Underpinning the enduring success of vertebrates is the highly adaptable nature of the peripheral nervous system, which is enabled by the exceptional malleability of the neural crest and placode developmental programs.
View Article and Find Full Text PDFSci Bull (Beijing)
January 2025
Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!