Rotational angular momentum polarization: the influence of stray magnetic fields.

J Chem Phys

School of Engineering and Physical Sciences, William H. Perkin Building, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom.

Published: January 2008

We show that weak residual magnetic fields can significantly affect the preparation and measurement of molecular rotational angular momentum alignment in a typical gas-phase stereodynamics apparatus. Specifically, polarization spectroscopy, a third-order nonlinear spectroscopic technique, is used to prepare and probe the collisional and noncollisional losses of rotational angular momentum alignment of OH X (2)Pi. Residual magnetic fields of the order of the geomagnetic field are shown to have a significant effect on the prepared polarization on a submicrosecond timescale. This can be expected to be a significant effect for many gas-phase free radicals, such as those of interest in combustion, atmospheric chemistry, and the burgeoning field of cold molecules. We demonstrate a simple experimental remedy for this problem.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2829111DOI Listing

Publication Analysis

Top Keywords

rotational angular
12
angular momentum
12
magnetic fields
12
residual magnetic
8
momentum alignment
8
momentum polarization
4
polarization influence
4
influence stray
4
stray magnetic
4
fields weak
4

Similar Publications

The spin angular momentum (SAM) plays a significant role in light-matter interactions. It is well known that light carrying SAM can exert optical torques on micro-objects and drive rotations, but 3D rotation around an arbitrary axis remains challenging. Here, we demonstrate full control of the 3D optical torque acting on a trapped microparticle by tailoring the vectorial SAM transfer.

View Article and Find Full Text PDF

Absorption spectra of PS in the ultraviolet and infrared region.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 China. Electronic address:

The line list is essential for accurately modeling various astrophysical phenomena, such as stellar photospheres and atmospheres of extrasolar planets. This paper introduces a new line database for the PS molecule spanning from the ultraviolet to the infrared regions, covering wavenumbers up to 45000 cm and containing over ten million transitions between 150,458 states with total angular momentum J < 160. Accurate line intensities for rotational, vibrational and electronic transitions are generated by using the general purpose variational code DUO.

View Article and Find Full Text PDF

In the last decade, substantial progress has been made to improve the performance of optical gyroscopes for inertial navigation applications in terms of critical parameters such as bias stability, scale factor stability, and angular random walk (ARW). Specifically, resonant fiber optic gyroscopes (RFOGs) have emerged as a viable alternative to widely popular interferometric fiber optic gyroscopes (IFOGs). In a conventional RFOG, a single-wavelength laser source is used to generate counter-propagating waves in a ring resonator, for which the phase difference is measured in terms of the resonant frequency shift to obtain the rotation rate.

View Article and Find Full Text PDF

We present a novel photoreconfigurable metasurface designed for independent and efficient control of electromagnetic waves with identical incident polarization and frequency across the entire spatial domain. The proposed metasurface features a three-layer architecture: a top layer incorporating a gold circular split ring resonator (CSRR) filled with perovskite material and dual -shaped perovskite resonators; a middle layer of polyimide dielectric; and a bottom layer comprising a perovskite substrate with an oppositely oriented circular split ring resonator filled with gold. By modulating the intensity of a laser beam, we achieve autonomous manipulation of incident circularly polarized terahertz waves in both transmission and reflection modes.

View Article and Find Full Text PDF

Bulky cellulosic network structures (BRC) with densities between 60 and 130 g/l were investigated as a sustainable alternative to fossil-based foams for impact liners in bicycle helmets. The mechanical properties of BRC foams were characterized across a wide range of strain rates and incorporated into a validated finite element model of a hardshell helmet. Virtual impact tests simulating both consumer information and certification scenarios were conducted to compare BRC-lined helmets against conventional expanded polystyrene (EPS) designs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!