Influence of progressive cross-linking on dewetting of polystyrene thin films.

Langmuir

Institut de Chimie des Surfaces et Interfaces, UHA-CNRS, Mulhouse Cedex, France.

Published: March 2008

We present dewetting experiments on thin polymer films as a function of cross-linking density. Covalent cross-links were obtained in the glassy state on the basis of azide photochemistry of linear random copolymers of styrene and p-(azidomethyl)styrene, i.e., 106 and 2500 kg/mol with 7% and 1% azide functionality among the polymer backbone, respectively. Upon ultraviolet radiation, azides generate highly unstable nitrene radicals which react with the surrounding polymer backbone, yielding covalent cross-links. We determined the probability for film rupture, defined by the number of holes formed per unit area, and the relaxation time (tauw) of residual stresses which resulted from the film preparation process. For the lower molar mass polymer studied and for azide conversion rates lower than 60%, only partial cross-linking occurred. The effective molar mass of the polymer increased, and consequently, an increase in tauw was observed. The increase in tauw was accompanied by a decrease in hole density, indicating that the still present residual stresses in the films were not able anymore to rupture the films at the high probability of un-cross-linked polymers. For high conversion (>60%), cross-linking was significant enough to lead to the formation of a three-dimensional rubbery network which, in turn, generated an elastic force that counteracted the driving forces. This elastic force eventually inhibited dewetting and the relaxation of residual stresses. Thus, at high conversions, the relaxation time tauw grew exponentially and the number of holes tended toward zero. For the higher molar mass polymer, no changes in the relaxation time tauw were observed for low conversion (<30%). However, at a higher conversion rate, tauw increased drastically, suggesting an almost infinitely long relaxation time at 100% conversion. Consequently, to successfully stabilize thin polymer films by cross-linking, it is preferable to use long polymer chains.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la702984wDOI Listing

Publication Analysis

Top Keywords

relaxation time
12
time tauw
12
residual stresses
12
molar mass
12
mass polymer
12
covalent cross-links
8
polymer backbone
8
number holes
8
increase tauw
8
tauw observed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!