A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Labeling of fatty acid ligands with the strong electrophilic metal fragment [99mTc(N)(PNP)]2+ (PNP=diphosphane ligand). | LitMetric

The electrophilic metal fragment [(99m)Tc(N)(PNP)](2+) (PNP=diphosphane ligand) has been employed for the labeling of fatty acid chains of different lengths. To provide a site-specific group for the attachment of the metallic moiety, the fatty acid derivatives were functionalized by appending a bis-mercapto or, alternatively, a dithiocarbamato pi-donor chelating systems to one terminus of the carbon chain to yield both dianionic and monoanionic bifunctional ligands (L). The resulting complexes, [(99m)Tc(N)(PNP)(L)] (0/+), exhibited the usual asymmetrical structure in which a Tc(triple bond)N group was surrounded by two different bidentate chelating ligands. Dianionic ligands gave rise to neutral complexes, while monoanionic ligands afforded monocationic species. Biodistribution studies were carried out in rats. An isolated perfused rat heart model was employed to assess how structural changes in the radiolabeled fatty acid compound affect the myocardial first pass extraction. Results showed that only monocationic complexes accumulated in myocardium to a significant extent. Conversely, neutral complexes were not efficiently retained into the heart region and rapidly washed out. In isolated perfused rat heart experiments, monocationic complexes exhibited a behavior similar to that of the monocationic flow tracers (99m)Tc-MIBI and (99m)Tc-DBODC with almost identical extraction values, a result that could be attributed to the presence of the monopositive charge. Instead, a slightly lower myocardial extraction was found for neutral complexes. Comparison of the observed kinetic behavior of neutral complexes in the isolated perfused rat heart model with that of the myocardial metabolic tracer [(123)I]IPPA revealed that the introduction of the metallic moiety partially hampers recognition of the labeled fatty acids by cardiac enzymes, and consequently, their behavior did not completely reflect myocardial metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bc7002378DOI Listing

Publication Analysis

Top Keywords

fatty acid
16
neutral complexes
16
isolated perfused
12
perfused rat
12
rat heart
12
labeling fatty
8
electrophilic metal
8
metal fragment
8
fragment [99mtcnpnp]2+
8
[99mtcnpnp]2+ pnp=diphosphane
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!