The cell-based assay using yeast deletion mutants has been recognized as an efficient analysis to discover therapeutic compounds and reveal their mode of action. In this study, S. pombe deletion mutants-based HTS screening was carried out to identify potential anti-cancer agents. The NCI chemical library of 5700 compounds was screened using kit strains, which consisted of S. pombe mutants harboring deletions in genes involved in DNA repair and mitotic control. During the screening, we identified 40 compounds conferring growth inhibition of S. pombe. Their anti-tumorigenic properties were examined by phenotypic effect on S. pombe, flow cytometry and apoptosis analysis of human cancer. Here, we report hit compounds inducing apoptosis for development of anti-cancer agents suggesting that S. pombe deletion mutants are useful in identifying potential anti-cancer agents in human cancer therapeutics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10637-007-9100-5 | DOI Listing |
G3 (Bethesda)
January 2025
School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
As part of an ongoing effort to generate comprehensive resources for the experimental analysis of fourth chromosome genes in Drosophila melanogaster, the Fourth Chromosome Resource Project has used CRISPR mutagenesis with single guide RNAs to isolate mutations in 62 of the 80 fourth chromosome, protein-coding genes. These mutations were induced on a fourth chromosome bearing a basal FRT insertion to facilitate experimental approaches involving FLP recombinase-induced mitotic recombination. To permit straightforward comparisons among mutant stocks, most of the mutations were generated on isogenic fourth chromosomes, which were then crossed into a common genetic background.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China.
Background: The determinants of differences in host infectivity among Cryptosporidium species and subtypes are poorly understood. Results from recent comparative genomic studies suggest that gains and losses of multicopy subtelomeric genes encoding insulinase-like proteases (INS-19 and INS-20 in Cryptosporidium parvum and their orthologs in closely related species) may potentially contribute to these differences.
Methodology/principal Findings: In this study, we investigated the expression and biological function of the INS-19 and INS-20 of C.
CRISPR J
January 2025
Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
Flax is an important crop used for oil and fiber production. Although genetic engineering has been possible in flax, it is not commonly used to produce cultivars. However, the use of genome editing technology, which can produce site-specific mutations without introducing foreign genes, may be a valuable tool for creating elite cultivars that can be easily cultivated.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Victoria, Australia.
Previous studies have demonstrated the safety and efficacy of a live-attenuated glycoprotein G (gG) deletion mutant vaccine strain of ILTV (∆gG-ILTV). In the current study, transcriptional profiles of chicken tracheal organ cultures (TOCs), 24 h post inoculation with ∆gG-ILTV or the gG-expressing parent wild-type strain, CSW-1 ILTV were explored and compared with the mock-infected TOCs using RNA-seq analysis. Transcriptomes of the vaccine and wild-type ILTV were also compared with each other.
View Article and Find Full Text PDFDevelopment
January 2025
Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus OH, USA.
Zebrafish have a high capacity to regenerate their hearts. Several studies have surveyed transcriptional enhancers to understand how gene expression is controlled during heart regeneration. We have identified REN or the runx1 enhancer that during regeneration regulates the expression of the nearby runx1 gene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!