Adaptation takes place not only when going to high altitude, as generally accepted, but also when going down to sea level. Immediately upon ascent to high altitude, the carotid body senses the lowering of the arterial oxygen partial pressure due to a diminished barometric pressure. High altitude adaptation is defined as having three stages: 1) acute, first 72 hours, where acute mountain sickness (CMS or polyerythrocythemia) can occur; 2) subacute, from 72 hours until the slope of the hematocrit increase with time is zero; here high altitude subacute heart disease can occur; and 3) chronic, where the hematocrit level is constant and the healthy high altitude residents achieve their optimal hematocrit. In the chronic stage, patients with CMS increase their hematocrit values to levels above that of normal individuals at the same altitude. CMS is due to a spectrum of medical disorders focused on cardiopulmonary deficiencies, often overlooked at sea level. In this study we measured hematocrit changes in one high altitude resident traveling several times between La Paz (3510 m) and Copenhagen (35 m above sea level) for the past 3 years. We have also studied the fall in hematocrit values in 2 low-landers traveling once from La Paz to Copenhagen. High altitude adaptation is altitude and time dependent, following the simplified equation: Adaptation=Time/Altitude where High altitude adaptation factor=Time at altitude (days)/Altitude in kilometers (km). A complete and optimal hematocrit adaptation is only achieved at around 40 days for a subject going from sea level to 3510 m in La Paz. The time in days required to achieve full adaptation to any altitude, ascending from sea level, can be calculated by multiplying the adaptation factor of 11.4 times the altitude in km. Descending from high altitude in La Paz to sea level in Copenhagen, the hematocrit response is a linear fall over 18 to 23 days.

Download full-text PDF

Source

Publication Analysis

Top Keywords

high altitude
36
sea level
24
altitude adaptation
16
altitude
15
hematocrit
9
high
9
hematocrit changes
8
going sea
8
optimal hematocrit
8
hematocrit values
8

Similar Publications

Introduction: In high-altitude cities located above 2,500 m, hospitals face a concerning mortality rate of over 50% among intensive care unit (ICU) patients with acute respiratory distress syndrome (ARDS). This elevated mortality rate is largely due to the absence of altitude-specific medical protocols that consider the unique physiological adaptations of high-altitude residents to hypoxic conditions. This study addresses this critical gap by analyzing demographic, clinical, sex-specific, and preclinical data from ICUs in Bogotá, Colombia (2,650 m) and El Alto, Bolivia (4,150 m).

View Article and Find Full Text PDF

Several recent investigations into montane regions have reported on excess mercury accumulation in high-altitude forest ecosystems. This study explored the Singalila National Park, located on the Singalila ridge of the Eastern Himalayas, revealing substantial mercury contamination. Particular focus was on Sandakphu (3636 m), the highest peak in West Bengal, India.

View Article and Find Full Text PDF

The inflammatory response of lung tissue and abnormal proliferation of pulmonary artery smooth muscle cells are involved in the pathogenesis of high-altitude pulmonary hypertension (HAPH). Halofuginone (HF), an active ingredient derivative of Chang Shan (Dichroa febrifuga Lour. [Hydrangeaceae]), has antiproliferative, antihypertrophic, antifibrotic, and other effects, but its protective effects on HAPH remains unclear.

View Article and Find Full Text PDF

Hemolysis, elevated liver enzymes, low platelet count (HELLP) syndrome is a severe complication of preeclampsia (PE), with a higher incidence rate in people living at high altitudes, such as Tibet area. Maternal HELLP syndrome is associated with an elevated neonatal mortality rate. The purpose of this study was to investigate the predicting factors for neonatal outcomes with maternal HELLP syndrome.

View Article and Find Full Text PDF

: Assessing vector bionomics is crucial to improving vector control strategies. Several entomological studies have been conducted to describe malaria transmission in different eco-epidemiological settings in Cameroon; knowledge gaps persist, particularly in highland areas. This study aimed to characterize malaria vectors in three localities along an altitudinal gradient in the western region: Santchou (700 m), Dschang (1400 m), and Penka Michel (1500 m).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!