Effects of omega-hydroxylase product on distal human pulmonary arteries.

Am J Physiol Heart Circ Physiol

Le Bilarium, Department of Physiology and Biophysics, Université de Sherbrooke, 3001 12th Ave. N, Sherbrooke, J1H 5N4, QC, Canada.

Published: March 2008

The aim of the present study was to provide a mechanistic insight into how 20-hydroxyeicosatetraenoic acid (20-HETE) relaxes distal human pulmonary arteries (HPAs). This compound is produced by omega-hydroxylase from free arachidonic acid. Tension measurements, performed on either fresh or 1 day-cultured pulmonary arteries, revealed that the contractile responses to 1 microM 5-hydroxytryptamine were largely relaxed by 20-HETE in a concentration-dependent manner (0.01-10 microM). Iberiotoxin pretreatments (10 nM) partially decreased 20-HETE-induced relaxations. However, 10 microM indomethacin and 3 microM SC-560 pretreatments significantly reduced the relaxations to 20-HETE in these tissues. The relaxing responses induced by the eicosanoid were likely related to a reduced Ca2+ sensitivity of the myofilaments since free Ca2+ concentration ([Ca2+])-response curves performed on beta-escin-permeabilized cultured explants were shifted toward higher [Ca2+]. 20-HETE also abolished the tonic responses induced by phorbol-ester-dibutyrate (a PKC-sensitizing agent). Western blot analyses, using two specific primary antibodies against the PKC-potentiated inhibitory protein CPI-17 and its PKC-dependent phosphorylated isoform pCPI-17, confirmed that 20-HETE interferes with this intracellular process. We also investigated the effect of 20-HETE on the activation of Rho-kinase pathway-induced Ca2+ sensitivity. The data demonstrated that 20-HETE decreased U-46619-induced Ca2+ sensitivity on arteries. Hence, this observation was correlated with an increased staining of p116(Rip), a RhoA-binding protein. Together, these results strongly suggest that the 20-hydroxyarachidonic acid derivative is a potent modulator of tone in HPAs in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.01115.2007DOI Listing

Publication Analysis

Top Keywords

pulmonary arteries
12
ca2+ sensitivity
12
distal human
8
human pulmonary
8
responses induced
8
20-hete
7
effects omega-hydroxylase
4
omega-hydroxylase product
4
product distal
4
arteries
4

Similar Publications

Echocardiography of the right heart in pulmonary arterial hypertension: insights from the ULTRA RIGHT VALUE study.

Eur Heart J Imaging Methods Pract

January 2025

Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, Rome 00161, Italy.

Aims: Outcome in pulmonary arterial hypertension (PAH) is determined by right ventricular (RV) function adaptation to increased afterload. Echocardiography is easily available to assist bedside evaluation of the RV. However, no agreement exists about the feasibility and most relevant measurements.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a rare and potentially fatal condition characterized by progressive increases in blood pressure in the arteries of the lungs. Oral selexipag, approved by the Food and Drug Administration (FDA) in 2015 for the treatment of PAH, targets prostacyclin receptors on pulmonary arterial vascular smooth muscle and endothelial cells to improve blood flow through the lungs and reduce pulmonary vascular resistance. Oral selexipag is effective, but may be discontinued due to factors like side effects, emergency conditions, or inability to take oral medication, potentially leading to severe adverse events, such as rebound pulmonary hypertension and right heart failure.

View Article and Find Full Text PDF

Pulmonary artery choriocarcinoma mimicking pulmonary thromboembolism: a case report.

Transl Cancer Res

December 2024

Department of Geriatric Respiratory Disease, Institute of Guangdong Provincial Geriatrics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.

Background: Primary choriocarcinoma of the pulmonary artery is an exceedingly rare malignant neoplasm, which is often misdiagnosed due to its nonspecific clinical presentation. While this condition is characterized by the presence of trophoblastic cells, typically associated with gestational trophoblastic diseases, we encountered a case occurring in an extragenital location. The rarity of such tumors makes it challenging for clinicians to consider them in differential diagnosis, especially when the initial symptoms mimic more common conditions such as pulmonary thromboembolism (PTE).

View Article and Find Full Text PDF

The relationship between cancer and thrombosis was initially highlighted in the 19th century. Vascular complications in oncology can be arterial or venous thrombosis, and incidental pulmonary embolism is a growing challenge. We aimed to describe the frequency and clinical characteristics of cancer patients with incidental venous thromboembolism (iVTE).

View Article and Find Full Text PDF

Right Ventricular Function and Outcomes Stratified by the Effective Regurgitant Orifice Area in Secondary Tricuspid Regurgitation.

Can J Cardiol

January 2025

Department of Cardiology, Istituto Auxologico Italiano, IRCCS, Milan, Italy; Department of Medicine and Surgery, University of Milano- Bicocca, Milan, Italy.

Background: In patients with moderate and severe secondary tricuspid regurgitation (STR), the effective regurgitant orifice area (EROA), corrected using the proximal isovelocity surface area (PISA) method for tricuspid valve leaflet tethering and low TR jet velocities, has an unclear threshold for identifying high-risk patients. This study aimed to establish a risk-based EROA cutoff and assess the impact of right ventricular (RV) remodeling on outcomes in low-risk STR patients according to EROA.

Methods: We included 513 consecutive outpatients (age 75±13 years, 47% male) with moderate and severe STR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!