Eating disorders (EDs) are complex psychiatric diseases that include anorexia nervosa and bulimia nervosa, and have higher than 50% heritability. Previous studies have found association of BDNF and NTRK2 to ED, while animal models suggest that other neurotrophin genes might also be involved in eating behavior. We have performed a family-based association study with 151 TagSNPs covering 10 neurotrophin signaling genes: NGFB, BDNF, NTRK1, NGFR/p75, NTF4/5, NTRK2, NTF3, NTRK3, CNTF and CNTFR in 371 ED trios of Spanish, French and German origin. Besides several nominal associations, we found a strong significant association after correcting for multiple testing (P = 1.04 x 10(-4)) between ED and rs7180942, located in the NTRK3 gene, which followed an overdominant model of inheritance. Interestingly, HapMap unrelated individuals carrying the rs7180942 risk genotypes for ED showed higher levels of expression of NTRK3 in lymphoblastoid cell lines. Furthermore, higher expression of the orthologous murine Ntrk3 gene was also detected in the hypothalamus of the anx/anx mouse model of anorexia. Finally, variants in NGFB gene appear to modify the risk conferred by the NTRK3 rs7180942 risk genotypes (P = 4.0 x 10(-5)) showing a synergistic epistatic interaction. The reported data, in addition to the previous reported findings for BDNF and NTRK2, point neurotrophin signaling genes as key regulators of eating behavior and their altered cross-regulation as susceptibility factors for EDs.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddn013DOI Listing

Publication Analysis

Top Keywords

neurotrophin signaling
12
altered cross-regulation
8
eating disorders
8
bdnf ntrk2
8
eating behavior
8
signaling genes
8
ntrk3 gene
8
rs7180942 risk
8
risk genotypes
8
ntrk3
5

Similar Publications

A considerable amount of morbidity and disability are caused by a wide variety of neurological illnesses together referred to as neurodegenerative diseases. Among them, Alzheimer's and Parkinson's diseases are the most prevalent and have been thoroughly studied. The development of intervention techniques that focus on the unfavorable elements of these diseases, particularly those that could help halt their course, has become increasingly important.

View Article and Find Full Text PDF

The role of lysophosphatidic acid and its receptors in corneal nerve regeneration.

Ocul Surf

December 2024

Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Germany. Electronic address:

The integrity of corneal nerves is critical for ocular surface health, and damages can lead to Neurotrophic Keratopathy (NK). Despite the regenerative abilities of the peripheral nerve system (PNS), corneal nerve regeneration is often incomplete, and the underlying mechanisms are poorly understood. This study aims to identify potential factors that can enhance corneal nerve regeneration for NK treatment, with a focus on Lysophosphatidic acid (LPA).

View Article and Find Full Text PDF

This study aims to investigate the effect of Anmeidan on hippocampal neurons and synaptic microenvironments in sleep-deprived rats. Sixty SD rats were randomly divided into blank, model, Anmeidan, and melatonin groups, with 15 rats in one group. The study used the multi-platform method to prepare the sleep deprivation model.

View Article and Find Full Text PDF

Targeting ERBB3 and AKT to overcome adaptive resistance in EML4-ALK-driven non-small cell lung cancer.

Cell Death Dis

December 2024

Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.

The fusion event between EML4 and ALK drives a significant oncogenic activity in 5% of non-small cell lung cancer (NSCLC). Even though potent ALK-tyrosine kinase inhibitors (ALK-TKIs) are successfully used for the treatment of EML4-ALK-positive NSCLC patients, a subset of those patients eventually acquire resistance during their therapy. Here, we investigate the kinase responses in EML4-ALK V1 and V3-harbouring NSCLC cancer cells after acute inhibition with ALK TKI, lorlatinib (LOR).

View Article and Find Full Text PDF

Marcks overexpression in retinal ganglion cells promotes optic nerve regeneration.

Cell Death Dis

December 2024

Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

Regeneration of injured central nervous system (CNS) axons is highly restricted, leading to permanent neurological deficits. The myristoylated alanine-rich C-kinase substrate (MARCKS) is a membrane-associated protein kinase C (PKC) substrate ubiquitously expressed in eukaryotic cells, plays critical roles in development, brain plasticity, and tissues regeneration. However, little is known about the role of Marcks in CNS axon regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!