A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prediction of the receptor conformation for iGluR2 agonist binding: QM/MM docking to an extensive conformational ensemble generated using normal mode analysis. | LitMetric

Prediction of the receptor conformation for iGluR2 agonist binding: QM/MM docking to an extensive conformational ensemble generated using normal mode analysis.

J Mol Graph Model

Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.

Published: June 2008

Highly flexible proteins constitute a significant challenge in molecular docking within the field of drug design. Depending on the efficacy of the bound ligand, the ligand-binding domain (LBD) of the ionotropic glutamate receptor iGluR2 adopts markedly different degrees of domain closure due to large-scale domain movements. With the purpose of predicting the induced domain closure of five known iGluR2 partial to full agonists we performed a validation study in which normal mode analysis (NMA) was employed to generate a 25-membered ensemble of iGluR2 LBD structures with gradually changing domain closures, followed by accurate QM/MM docking to the ensemble. Based on the docking scores we were able to predict the correct optimal degree of closure for each ligand within 1-3 degrees deviation from the experimental structures. We demonstrate that NMA is a useful tool for reliable ensemble generation and that we are able to predict the ligand induced conformational change of the receptor through docking to such an ensemble. The described protocol expands and improves the information that can be obtained from computational docking when dealing with a flexible receptor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmgm.2007.11.006DOI Listing

Publication Analysis

Top Keywords

qm/mm docking
8
normal mode
8
mode analysis
8
domain closure
8
docking ensemble
8
docking
6
ensemble
5
domain
5
prediction receptor
4
receptor conformation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!