Previously, numerous three-dimensional finite element (FE) models of the dentoalveolar complex have been developed and stress analyses of orthodontic tooth movements were reported. Most of the models were, however, developed based on average anatomical data, but not on individual data. The aim of this study, therefore, was to investigate dentoalveolar stress distribution by lingual and distal tipping tooth movements using FE models of individual teeth based on the limited cone beam CT (3DX) images. Three extracted teeth (lower canine, upper molar, and lower molar) were used to test the three-dimensional reconstruction procedure in terms of accuracy and reproducibility in linear dimensions and sizes. From the stress analysis of the three different models, the equivalent stress in tipping movement concentrated at the cervical region of the PDL and bone crest in all teeth. It was suggested that the FE modeling technique based on 3DX in this study is recommended for the individual determination of optimal orthodontic force for effective tooth movement.

Download full-text PDF

Source
http://dx.doi.org/10.4012/dmj.26.882DOI Listing

Publication Analysis

Top Keywords

limited cone
8
cone beam
8
tipping tooth
8
tooth movement
8
tooth movements
8
development three-dimensional
4
three-dimensional modeling
4
modeling system
4
system limited
4
beam images
4

Similar Publications

Aim: The current study aimed to assess the oropharyngeal space using cone-beam computed tomography (CBCT) and its effect on airway volume both before and after denture placement.

Materials And Methods: For this investigation, a total of 15 individuals with fully edentulous upper and lower ridges, ranging in age from 40 to 70, were taken into consideration. A recording of the pulmonary function test was made both prior to and following full denture recovery.

View Article and Find Full Text PDF

Background: The success of embolization, a minimally invasive treatment of liver cancer, could be evaluated in the operational room with cone-beam CT by acquiring a dynamic perfusion scan to inspect the contrast agent flow.

Purpose: The reconstruction algorithm must address the issues of low temporal sampling and higher noise levels inherent in cone-beam CT systems, compared to conventional CT.

Methods: Therefore, a model-based perfusion reconstruction based on the time separation technique (TST) was applied.

View Article and Find Full Text PDF

Effect of initial bone morphology on alveolar bone remodeling following molar extraction: A retrospective study.

J Periodontol

January 2025

Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.

Background: The clinical evidence about alveolar ridge changes following molar extraction and how the alveolar bone morphology influences the ridge dimensional changes remains limited.

Methods: A total of 192 patients with 199 molar extractions were included in this retrospective study. Cone-beam computed tomography (CBCT) images of patients were obtained 0-3 months pre extraction and 6-12 months post extraction.

View Article and Find Full Text PDF

In image-guided radiotherapy (IGRT), four-dimensional cone-beam computed tomography (4D-CBCT) is critical for assessing tumor motion during a patients breathing cycle prior to beam delivery. However, generating 4D-CBCT images with sufficient quality requires significantly more projection images than a standard 3D-CBCT scan, leading to extended scanning times and increased imaging dose to the patient. To address these limitations, there is a strong demand for methods capable of reconstructing high-quality 4D-CBCT images from a 1-minute 3D-CBCT acquisition.

View Article and Find Full Text PDF

Background: Histotripsy is a non-invasive, non-ionizing, non-thermal focused ultrasound technique. High amplitude short acoustic pulses converge to create high negative pressures that cavitate endogenous gas into a bubble cloud leading to mechanical tissue destruction. In the United States, histotripsy is approved to treat liver tumors under diagnostic ultrasound guidance but in initial clinical cases, some areas of the liver have not been treated due to bone or gas obstructing the acoustic window for targeting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!