To increase the bond strength of CAD/CAM-fabricated, leucite-reinforced glass ceramics with a resin cement, the effects of the following were investigated: surface modification by tribochemical (TBC) treatment, followed by combined application of a silane coupling agent and a functional monomer as a primer. Bond strength was evaluated by a shear bond test. It was found that a silane coupling agent was useful for all the surfaces, particularly for the TBC-treated surface. This was because of the presence of a silica layer on the modified surface. The combination of a silane coupling agent and a functional monomer on the TBC surface allowed marked improvement in bonding, whereby the bonding endured 20,000 cycles of thermal cycling. Therefore, TBC treatment in combination with a silane coupling agent and a functional monomer as a primer substantially increased the bond strength of CAD/CAM-fabricated glass ceramics with resin cement, if the treatment conditions were appropriate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4012/dmj.26.713 | DOI Listing |
Langmuir
January 2025
School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China.
The interfacial mechanical characteristics of sandwich structures are crucial in defining the comprehensive mechanical performance of the whole structure. Nevertheless, in practical applications, the interface often emerges as the weakest segment due to potential defects in the interface of porous metal sandwich plates (PMSP). This study aims to explore the regulatory mechanisms influencing the mechanical characteristics of nano-SiO-reinforced aluminum foam sandwich structure (AFS) interfaces and to propose an effective strategy to achieve AFS interfaces with superior and stable mechanical properties.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
January 2025
College of Life Science, Hebei Agricultural University, Baoding, Hebei 071001, China; Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei 071001, China; Hebei Agriculture Waste Resource Utilization Engineering Research Center, Baoding, Hebei 071001, China. Electronic address:
s: This study aimed to prepare a new separation medium, silane coupling agent KH570- modified halloysite nanotube (MPS-HNT) monolithic column, with excellent separation performance for small molecular compounds and macromolecular proteins. This was prepared using the principle of redox polymerization with modified HNTs as monomers. The optimal monomer proportion was obtained by optimizing the ratio of monomer, cross-linker, and pore-forming agent, which was evaluated using scanning electron microscopy, nitrogen adsorption, and mercury intrusion.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
ConspectusChiral organosilicon compounds bearing a Si-stereogenic center have attracted increasing attention in various scientific communities and appear to be a topic of high current relevance in modern organic chemistry, given their versatile utility as chiral building blocks, chiral reagents, chiral auxiliaries, and chiral catalysts. Historically, access to these non-natural Si-stereogenic silanes mainly relies on resolution, whereas their asymmetric synthetic methods dramatically lagged compared to their carbon counterparts. Over the past two decades, transition-metal-catalyzed desymmetrization of prochiral organosilanes has emerged as an effective tool for the synthesis of enantioenriched Si-stereogenic silanes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Bionic Engineering Ministry of Education, Jilin University, Changchun 130025, China.
Studies targeting the blood repellency and autonomous anticoagulation of superhydrophobic (SH) surfaces are potentially valuable for their application in blood contact. The anticoagulation abilities and potential mechanisms of different SH surfaces urgently need to be revealed. In this study, a range of microprotrusion arrays on Al substrates with varying spacings via laser ablation through the utilization of organic adsorption and siloxane coupling reactions were fabricated.
View Article and Find Full Text PDFRSC Adv
January 2025
Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou 325035 Zhejiang China
Waterproof fatliquoring agents can transform leather from a hydrophilic state to a hydrophobic state in the wet process of leather production. However, traditional waterproof fatliquoring agents may cause environmental pollution. Fluorocarbons in fluorinated fatliquoring agents are difficult to degrade, and polyacrylic acid fatliquoring agents require chromium powder fixation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!