Retinoic acid (RA) plays a critical role in cell growth and tissue development. RA is also a regulating factor of pituitary function. RA is synthesized from retinoids through oxidation processes. The oxidation of retinal to RA is catalyzed by the retinaldehyde dehydrogenases (RALDHs), including RALDH1, RALDH2 and RALDH3. Recently, we demonstrated that RALDH1 is expressed in the anterior pituitary glands of adult male rats. However, the expression of RALDH1 in the female pituitary gland and the regulation of RALDH1 expression have not been determined. Therefore, we examined the expression of RALDH1 mRNA in the pituitary glands of adult female rats. By in situ hybridization with digoxigenin-labeled cRNA probes and quantitative real-time PCR analysis, we found that the expression level of RALDH1 was significantly lower in estrus as compared to proestrus, metestrus and diestrus. RALDH1 mRNA levels increased after ovariectomy and decreased remarkably after a 1-week treatment with 17beta-estradiol implants. Estradiol (0.01-100 microg per rat) dose-dependently decreased the expression of RALDH1 in the pituitary glands after 24 hours of subcutaneous administration. These results clearly show that RALDH1 mRNA expression is suppressed by estrogen. We speculate that the generation of RA is regulated by estrogen and that RA plays a role in the estrus cycle through paracrine and/or autocrine mechanisms in the anterior pituitary gland of female rats.

Download full-text PDF

Source
http://dx.doi.org/10.1507/endocrj.k07-101DOI Listing

Publication Analysis

Top Keywords

pituitary glands
16
anterior pituitary
12
female rats
12
expression raldh1
12
raldh1 mrna
12
raldh1
9
glands adult
8
pituitary gland
8
expression
7
pituitary
7

Similar Publications

Elevated cortisol in chronic stress and mood disorders causes morbidity including metabolic and cardiovascular diseases. There is therefore interest in developing drugs that lower cortisol by targeting its endocrine pathway, the hypothalamic-pituitary-adrenal (HPA) axis. However, several promising HPA-modulating drugs have failed to reduce long-term cortisol in mood disorders, despite effectiveness in other hypercortisolism conditions such as Cushing's syndrome.

View Article and Find Full Text PDF

Cushing syndrome.

Nat Rev Dis Primers

January 2025

Endocrine Division, Department of Medicine, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, Québec, Canada.

Cushing syndrome (CS) is a constellation of signs and symptoms caused by excessive exposure to exogenous or endogenous glucocorticoid hormones. Endogenous CS is caused by increased cortisol production by one or both adrenal glands (adrenal CS) or by elevated adrenocorticotropic hormone (ACTH) secretion from a pituitary tumour (Cushing disease (CD)) or non-pituitary tumour (ectopic ACTH secretion), which stimulates excessive cortisol production. CS is associated with severe multisystem morbidity, including impaired cardiovascular and metabolic function, infections and neuropsychiatric disorders, which notably reduce quality of life.

View Article and Find Full Text PDF

Metastases to the pituitary gland are a rare finding, with breast and lung being the most common metastases in this anatomical region. Pituitary melanoma metastases reports are thus sparse, and both diagnosis and treatment are challenging. We present the case of a 66-year-old woman with pituitary melanoma metastasis who presented with symptoms of anterior pituitary dysfunction and headache.

View Article and Find Full Text PDF

A Y-shaped sphenoidal sinus septum: a case report.

Anat Cell Biol

January 2025

Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA.

The sphenoidal sinus septum is one of the most important landmarks during endonasal endoscopic transsphe-noidal operations. During routine coronal sectioning of the face, we found a variant Y-shaped septum in the sphenoidal sinus of a female cadaver. This unusual septum was found between two sections (anterior and posterior sections) and located inferior to the pituitary gland.

View Article and Find Full Text PDF

Early precursor-derived pituitary gland tissue-resident macrophages play a pivotal role in modulating hormonal balance.

Cell Rep

January 2025

Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland. Electronic address:

The pituitary gland is the central endocrine regulatory organ producing and releasing hormones that coordinate major body functions. The physical location of the pituitary gland at the base of the brain, though outside the protective blood-brain barrier, leads to an unexplored special immune environment. Using single-cell transcriptomics, fate mapping, and imaging, we characterize pituitary-resident macrophages (pitMØs), revealing their heterogeneity and spatial specialization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!