AI Article Synopsis

  • The study examines the interdependence of tarsal bones' movements, referred to as the "tarsal gearbox," emphasizing the need for data on joint rotations to model this structure effectively.
  • Using linear regression analyses based on MRI data, the research found strong predictive relationships between tibiocalcaneal rotations and tarsal joint rotations, with significant correlation values (r² = 0.73-0.97).
  • Findings suggest that tibiocalcaneal rotations can be reliably used to predict tarsal joint movements, which may facilitate motion analysis in studying rearfoot kinematics using non-invasive skin markers.

Article Abstract

Background: The dependence of the movements of the calcaneus, cuboid, navicular, and talus on each other have been described as the tarsal gearbox. To provide a basis of its modeling, data on transmissions between tarsal joint rotations within this gearbox are required. The feasibility of tibiocalcaneal rotations to predict tarsal joint rotations is of interest because a meaningful relation would allow the use of common motion analysis with skin markers to investigate rearfoot kinematics.

Methods: We performed linear regression analyses between tarsal joint and tibiocalcaneal rotations on the basis of magnetic resonance imaging of tibia and tarsal bone positions during quasi-static foot pronation and supination.

Results: In the frontal plane and transverse planes, linear models were found to predict tarsal joint rotations quite well (r(2) = 0.83-0.97 for the frontal plane and r(2) = 0.73-0.95 for the transverse plane). For each degree of talocalcaneal rotation, there was 1.8 degrees of talonavicular rotation in the frontal plane and 1.6 degrees in the transverse plane; each degree of talocalcaneal rotation resulted in 0.6 degrees of calcanealcuboid rotation in the frontal plane and 0.7 degrees in the transverse plane; each degree of calcaneocuboid rotation resulted in 3 degrees of talonavicular rotation in the frontal plane and 2.8 degrees in the transverse; each degree of tibiocalcaneal rotation resulted in 0.9 degrees of talocalcaneal rotation in the frontal plane and 0.9 degrees in the transverse plane; and each degree of tibiocalcaneal rotation resulted in 1.6 degrees of talonavicular rotation in the frontal plane and 1.3 degrees in the transverse plane.

Conclusion: The present study provides a basis on which the tarsal gearbox in the frontal and the transverse planes under quasi-static conditions can be modeled. Furthermore, it is concluded that tibiocalcaneal rotations are practical for predicting tarsal joint rotations during quasi-static motions.

Download full-text PDF

Source
http://dx.doi.org/10.7547/0980045DOI Listing

Publication Analysis

Top Keywords

frontal plane
28
tarsal joint
20
rotation degrees
20
rotation frontal
20
plane degrees
20
degrees transverse
20
joint rotations
16
transverse plane
16
plane degree
16
tarsal gearbox
12

Similar Publications

In weightlifting, quantitative kinematic analysis is essential for evaluating snatch performance. While marker-based (MB) approaches are commonly used, they are impractical for training or competitions. Markerless video-based (VB) systems utilizing deep learning-based pose estimation algorithms could address this issue.

View Article and Find Full Text PDF

During flight, spatial disorientation (SD) commonly occurs when a pilot's perception conflicts with the aircraft's actual motion, attitude, or position. A prevalent form of SD is the somatogyral illusion, which is elicited by constant speed rotation and causes a false perception of motion in the opposite direction when the rotation ceases. This research aimed to investigate changes in brain activity that occur when experiencing a somatogyral illusion by simulating conditions closely mimicking flight conditions to gain insight into how to better manage this illusion during flight.

View Article and Find Full Text PDF

Mild-to-moderate hip osteoarthritis and hip bracing influence hip and knee biomechanics during 90° turns while walking.

Clin Biomech (Bristol)

December 2024

BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. Electronic address:

Background: Turning movements are frequently encountered during daily life and require more frontal and transverse hip mobility than straight walking. Thus, analysis of turning might be an insightful addition in the evaluation of conservative treatment approaches for hip osteoarthritis patients. The study objective was to quantify the effects of mild-to-moderate symptomatic hip osteoarthritis on lower-body turning biomechanics and evaluate the effects of hip bracing in this cohort.

View Article and Find Full Text PDF

Duchenne gait, characterized by an ipsilateral trunk lean towards the affected stance limb, compensates for weak hip abductor muscles, notably the gluteus medius (GM). This study aims to investigate how electromyographic (EMG) cluster analysis of GM contributes to a better understanding of Duchenne gait in patients with cerebral palsy (CP). We analyzed retrospective gait data from 845 patients with CP and 65 typically developed individuals.

View Article and Find Full Text PDF

Purpose: To compare the biomechanics of a drop vertical jump (DVJ) landing task and functional outcomes among patients with anterior cruciate ligament reconstruction (ACLR) with quadriceps tendon (QT) and patellar tendon (PT) autografts.

Methods: Physically active patients who underwent primary ACLR with either a QT or PT autograft were included in this study. All were within 6 months to 2 years after surgery and cleared for return to physical activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!