Various studies have suggested that the phytoestrogen genistein has beneficial cardioprotective and vascular effects. However, there has been scarce information regarding the primary effect of genistein on coronary blood flow and its mechanisms including estrogen receptors, autonomic nervous system, and nitric oxide (NO). The present study was planned to determine the primary effect of genistein on coronary blood flow and the mechanisms involved. In anesthetized pigs, changes in left anterior descending coronary artery caused by intracoronary infusion of genistein at constant heart rate and arterial pressure were assessed using ultrasound flowmeters. In 25 pigs, genistein infused at 0.075 mg/min increased coronary blood flow by about 16.3%. This response was graded in a further five pigs by increasing the infused dose of the genistein between 0.007 and 0.147 mg/min. In the 25 pigs, blockade of cholinergic receptors (iv atropine; five pigs) and alpha-adrenergic receptors (iv phentolamine; five pigs) did not abolish the coronary response to genistein, whose effects were prevented by blockade of beta(2)-adrenergic receptors (iv butoxamine; five pigs), nitric oxide synthase (intracoronary N(omega)-nitro-L-arginine methyl ester; five pigs) and estrogenic receptors (ERs; ERalpha/ERbeta; intracoronary fulvestrant; five pigs). In porcine aortic endothelial cells, genistein induced the phosphorylation of endothelial nitric oxide synthase and NO production through ERK 1/2, Akt, and p38 MAPK pathways, which was prevented by the concomitant treatment by butoxamine and fulvestrant. In conclusion, genistein primarily caused coronary vasodilation the mechanism of which involved ERalpha/ERbeta and the release of NO through vasodilatory beta(2)-adrenoreceptor effects.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2007-1361DOI Listing

Publication Analysis

Top Keywords

coronary blood
16
blood flow
16
nitric oxide
16
pigs
10
genistein
9
anesthetized pigs
8
estrogenic receptors
8
primary genistein
8
genistein coronary
8
flow mechanisms
8

Similar Publications

Modeling predicts facile release of nitrite but not nitric oxide from the thionitrate CHSNO with relevance to nitroglycerin bioactivation.

Sci Rep

December 2024

Department of Chemistry and Biochemistry, Centre for Research in Molecular Modeling (CERMM), Concordia University, 7141 Sherbrooke Street West, Montréal, QC, H4B 1R6, Canada.

Nitroglycerin is a potent vasodilator in clinical use since the late 1800s. It functions as a prodrug that is bioactivated by formation of an enzyme-based thionitrate, E-Cys-NO. This intermediate reportedly decomposes to release NO and NO but their relative yields remain controversial.

View Article and Find Full Text PDF

Effect of heart rate on B-type natriuretic peptide in sinus rhythm.

Sci Rep

December 2024

Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan.

B-type natriuretic peptide (BNP) levels accurately reflect the degree of cardiac overload in heart failure. Considering cardiac morphology and intracardiac pressure, including the left ventricular end-systolic volume index (LVESVI) and left ventricular end-diastolic volume index (LVEDVI), is essential for cardiac overload assessment. These indexes influence plasma BNP levels, and high heart rate is likely associated with cardiac morphology.

View Article and Find Full Text PDF

Triglyceride to high density lipoprotein cholesterol ratio and major adverse cardiovascular events in ACS patients undergoing PCI.

Sci Rep

December 2024

State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China.

The triglyceride to high density lipoprotein cholesterol (TG/HDL-C) ratio has been consistently linked with the risk of coronary heart disease (CHD). Nevertheless, there is a paucity of studies focusing on acute coronary syndrome (ACS) patients undergoing percutaneous coronary intervention (PCI) or experiencing bleeding events. The study encompassed 17,643 ACS participants who underwent PCI.

View Article and Find Full Text PDF

Research has shown various hydrolyzed proteins possessed beneficial physiological functions; however, the mechanism of how hydrolysates influence metabolism is unclear. Therefore, the current study aimed to examine the effects of different sources of protein hydrolysates, being the main dietary protein source in extruded diets, on metabolism in healthy adult dogs. Three complete and balanced extruded canine diets were formulated: control chicken meal diet (CONd), chicken liver and heart hydrolysate diet (CLHd), mechanically separated chicken hydrolysate diet (CHd).

View Article and Find Full Text PDF

The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!