To provide a scientific basis for the selection and use of continuous monitors for exposure and/or health effects studies, and for compliance and episode measurements at strategic locations in the State of New Jersey, we evaluated the performance of seven continuous fine particulate matter (PM2.5) monitors in the present study. Gravimetric samplers, as reference methods, were collocated with realtime instruments in both laboratory and field tests. The results of intercomparison of real-time monitors showed that the two nephelometers used in this study correlated extremely well (r2 approximately 0.97), and two tapered element oscillating monitors (TEOM 1400 and TEOM filter dynamics measurement system [FDMS]) correlated well (r2 > 0.85), whereas two beta gauges displayed a weaker correlation (r2 < 0.6). During a summertime controlled (laboratory) evaluation, the measurements made with the gravimetric method correlated well with the 24-hr integrated measurements made with the real-time monitors. The SidePak nephelometer overestimated the particle concentration by a factor of approximately 3.4 compared with the gravimetric method. During a summertime field evaluation, the TEOM FDMS monitor reported approximately 30% higher mass concentration than the Federal Reference Method (FRM); and the difference could be explained by the loss of semi-volatile materials from the FRM sampler. Results also demonstrated that 24-hr average PM2.5 mass concentrations measured by beta gauges and TEOM (50 degrees C) in winter correlated well with the integrated gravimetric method. Seasonal differences were observed in the performance of the TEOM (50 degrees C) monitor in measuring the particle mass attributed to the higher semi-volatile material loss in the winter weather. In applying the realtime particulate matter monitoring data into Air Quality Index (AQI) reporting, the Conroy method and the 8-hr end-hour average method were both found to be suitable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3155/1047-3289.57.12.1499 | DOI Listing |
BMC Public Health
January 2025
The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, Henan, P. R. China.
Background: The ambient particulate matter pollution may play a critical role in the initiation and development of tracheal, bronchus, and lung (TBL) cancer. Up to now, far too little attention has been paid to TBL cancer attributable to ambient particulate matter pollution. This study aims to assess the disease burden of TBL cancer attributable to ambient particulate matter pollution in global, regional and national from 1990 to 2021 to update the epidemiology data of this disease.
View Article and Find Full Text PDFPediatr Obes
January 2025
Epidemiology Branch, Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
Background: Previous research observed links between prenatal air pollution and risk of childhood obesity but the timing of the exposure is understudied.
Aim: We examined prenatal particulate matter (PM, PM) exposure and child anthropometry.
Materials & Methods: Children's body mass index z-scores (zBMI) at 0-3 (N = 4370) and 7-9 (n = 1191) years were derived from reported anthropometry at paediatric visits.
Int J Infect Dis
January 2025
School of Population Health, Faculty of Health Sciences, Curtin University, Australia; Geospatial and Tuberculosis Research Team, Telethon Kids Institute, Australia. Electronic address:
Objective: To map subnational and local prevalence of drug-resistant tuberculosis (DR-TB) across Africa.
Methods: We assembled a geolocated dataset from 173 sources across 31 African countries, comprising drug susceptibility test results and covariate data from publicly available databases. We used Bayesian model-based geostatistical framework with multivariate Bayesian logistic regression model to estimate DR-TB prevalence at lower administrative levels.
Environ Res
January 2025
Department of Public Health, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. Electronic address:
Background: Exposure to residential greenness has been linked with improved sleep duration; however, longitudinal evidence is limited, and the potential mediating effect of ambient fine particulate matter (PM) has yet to be assessed.
Methods: We obtained data for 19,567 participants across seven counties in a prospective cohort in Ningbo, China. Greenness was estimated using Normalized Difference Vegetation Index (NDVI) within 250-m, 500-m and 1000-m buffer zones, while yearly average PM concentrations were measured using validated land-use regression models, both based on individual residential addresses.
Environ Pollut
January 2025
University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA. Electronic address:
Airborne particulate matter (PM) in urban environments poses significant health risks by penetrating the respiratory system, with concern over lung-deposited surface area (LDSA) as an indicator of particle exposure. This study aimed to investigate the diurnal trends and sources of LDSA, particle number concentration (PNC), elemental carbon (EC), and organic carbon (OC) concentrations in Los Angeles across different seasons to provide a comprehensive understanding of the contributions from primary and secondary sources of ultrafine particles (UFPs). Hourly measurements of PNC and LDSA were conducted using the DiSCmini and Scanning Mobility Particle Sizer (SMPS), while OC and EC concentrations were measured using the Sunset Lab EC/OC Monitor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!