Mutations in the SPG7 gene encoding a mitochondrial protein termed paraplegin, are responsible for a recessive form of hereditary spastic paraparesis. Only few studies have so far been performed in large groups of hereditary spastic paraplegia (HSP) patients to determine the frequency of SPG7 mutations. Here, we report the result of a mutation screening conducted in a large cohort of 135 Italian HSP patients with the identification of six novel point mutations and one large intragenic deletion. Sequence analysis of the deletion breakpoint, together with secondary structure predictions of the deleted region, indicate that a complex rearrangement, likely caused by extensive secondary structure formation mediated by the short interspersed nuclear element (SINE) retrotransposons, is responsible for the deletion event. Biochemical studies performed on fibroblasts from three mutant patients revealed mild and heterogeneous mitochondrial dysfunctions that would exclude a specific association of a complex I defect with the pathology at the fibroblast level. Overall, our data confirm that SPG7 point mutations are rare causes of HSP, in both sporadic and familial forms, while underlying the puzzling and intriguing aspects of histological and biochemical consequences of paraplegin loss.

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.20682DOI Listing

Publication Analysis

Top Keywords

hereditary spastic
12
spg7 mutations
8
mutations large
8
large cohort
8
spastic paraplegia
8
studies performed
8
hsp patients
8
point mutations
8
secondary structure
8
mutations
5

Similar Publications

Introduction: COQ4 mutation often leads to a fatal multi-system disease in infants. Recently, it was reported that the biallelic COQ4 variants may be a potential cause of hereditary spastic paraplegia (HSP). This study aims to describe the clinical features and genotype of the COQ4 associated hereditary spastic paraplegia (HSP).

View Article and Find Full Text PDF
Article Synopsis
  • CTX (cerebrotendinous xanthomatosis) is a rare genetic lipid storage disease that can be difficult to diagnose due to its varied symptoms, often leading to confusion with other conditions like hereditary spastic paraplegia (HSP).
  • A case study of a 53-year-old woman showed a 25-year history of spastic paraparesis and, after years of undiagnosed progression, she was finally diagnosed with CTX through genetic testing revealing a variant in the CYP27A1 gene.
  • The patient's treatment included chenodeoxycholic acid, which stabilized her condition, but the advanced state of her disease limited improvement, highlighting the need for thorough investigation and awareness of CTX
View Article and Find Full Text PDF

Corticospinal motor neurons (CSMN), located in the motor cortex of the brain, are one of the key components of the motor neuron circuitry. They are in part responsible for the initiation and modulation of voluntary movement, and their degeneration is the hallmark for numerous diseases, such as amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia, and primary lateral sclerosis. Cortical hyperexcitation followed by in-excitability suggests the early involvement of cortical dysfunction in ALS pathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!