The properties of regenerated cartilage using bone marrow-derived mesenchymal stem cells (MSCs) and poly lactic-co-glycolic acid (PLGA) scaffold composites pretreated with TGF-beta3 were investigated and compared to the non-TGF-beta3 treated MSCs/PLGA composites in a rabbit model. We prepared MSCs/PLGA scaffold composites and pretreated it with TGF-beta3 for 3 weeks prior to transplantation. Then, composites were transplanted to the osteochondral defect in the rabbit knee. After 12 weeks of transplantation, 10 of the 12 rabbits in which TGF-beta3 pretreated MSCs/PLGA scaffold composites were transplanted showed cartilaginous regeneration. In gross morphology, regenerated cartilage showed smooth, flush, and transparent features. In indentation test, this had about 80% of Young's modulus of normal articular cartilage. Histological examination demonstrated hyaline like cartilage structures with glycosaminoglycan and type II collagen expression. Histological scores were not statistically different to the normal articular cartilage. These results showed improvement of cartilage regeneration compared to the non-TGF-beta3 pretreated MSCs/PLGA scaffold composite transplanted group. Thus, we have successfully regenerated improved hyaline-like cartilage and determined the feasibility of treating damaged articular cartilage using MSCs/PLGA scaffold composite pretreated with TGF-beta3. Also, we suggest this treatment modality as another concept of cartilage tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.31828DOI Listing

Publication Analysis

Top Keywords

articular cartilage
16
mscs/plga scaffold
16
scaffold composites
12
pretreated tgf-beta3
12
cartilage
10
properties regenerated
8
plga scaffold
8
regenerated cartilage
8
composites pretreated
8
compared non-tgf-beta3
8

Similar Publications

Forty Years of the Use of Cells for Cartilage Regeneration: The Research Side.

Pharmaceutics

December 2024

Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy.

The treatment of articular cartilage damage has always represented a problem of considerable practical interest for orthopedics. Over the years, many surgical techniques have been proposed to induce the growth of repairing tissue and limit degeneration. In 1994, the turning point occurred: implanted autologous cells paved the way for a new treatment option based more on regeneration than repair.

View Article and Find Full Text PDF

Tissue Engineering Construct for Articular Cartilage Restoration with Stromal Cells from Synovium vs. Dental Pulp-A Pre-Clinical Study.

Pharmaceutics

December 2024

Sports Medicine Division, Institute of Orthopedics and Traumatology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, SP, Brazil.

Background/objectives: Cartilage injuries and osteoarthritis are prevalent public health problems, due to their disabling nature and economic impact. Mesenchymal stromal cells (MSCs) isolated from different tissues have the immunomodulatory capacity to regulate local joint environment. This translational study aims to compare cartilage restoration from MSCs from the synovial membrane (SM) and dental pulp (DP) by a tissue-engineered construct with Good Manufacturing Practices.

View Article and Find Full Text PDF

Interleukin-1 (IL-1) is a pivotal mediator in the pathological progression of osteoarthritis (OA), playing a central role in disease progression. However, the rapid clearance of IL-1 receptor antagonist (IL-1Ra) from the joints may hinder the efficacy of intra-articular IL-1Ra injections in reducing OA-associated pain or cartilage degradation. Sustaining sufficient levels of IL-1Ra within the joints via adeno-associated virus (AAV)-mediated gene therapy presents a promising therapeutic strategy for OA.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a degenerative joint disease characterized by the breakdown of cartilage and the subsequent inflammation of joint tissues, leading to pain and reduced mobility. Despite advancements in symptomatic treatments, disease-modifying therapies for OA remain limited. This narrative review examines the dual role of autophagy in OA, emphasizing its protective functions during the early stages and its potential to contribute to cartilage degeneration in later stages.

View Article and Find Full Text PDF

Overuse injury is a frequent diagnosis in occupational medicine and athletics. Using an established model of upper extremity overuse, we sought to characterize changes occurring in the forepaws and forelimbs of mature female rats (14-18 months of age). Thirty-three rats underwent a 4-week shaping period, before performing a high-repetition low-force (HRLF) task for 12 weeks, with the results being compared to 32 mature controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!