Although pluripotent stem cells were recently discovered in postnatal testis, attempts to analyze their developmental potential have led to conflicting claims that spermatogonial stem cells are pluripotent or that they lose spermatogenic potential after conversion into pluripotent stem cells. To examine this issue, we analyzed the developmental fate of a single spermatogonial stem cell that appeared during transfection experiments. After transfection of a neomycin-resistance gene into germline stem cells, we obtained an embryonic stem-like, multipotent germline stem cell line. Southern blot analysis revealed that the germline stem and multipotent germline stem clones have the same transgene integration pattern, demonstrating their identical origin. The two lines, however, have different DNA methylation patterns. The multipotent germline stem cells formed chimeras after blastocyst injection but did not produce sperm after germ cell transplantation, whereas the germline stem cells could produce only spermatozoa and did not differentiate into somatic cells. Interestingly, the germline stem cells expressed several transcription factors (Pou5f1, Sox2, Myc, and Klf4) required for reprogramming fibroblasts into a pluripotent state, suggesting that they are potentially pluripotent. Thus, our study provides evidence that a single spermatogonial stem cell can acquire pluripotentiality but that conversion into a pluripotent cell type is accompanied by loss of spermatogenic potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1095/biolreprod.107.066068 | DOI Listing |
J Transl Med
January 2025
Dental School, The University of Western Australia, 17 Monash Avenue, Nedlands, WA, 6009, Australia.
Background: Treatment of deep carious lesions poses significant challenges in dentistry, as complete lesion removal risks compromising pulp vitality, while selective removal often reduces the longevity of restorations. Herein, we propose a minimally invasive approach using High-Intensity Focused Ultrasound (HIFU) for microscale removal of carious dentine. Concurrently, HIFU's antimicrobial effects against associated cariogenic biofilms and the corresponding thermal and biological impacts on surrounding tissues were investigated.
View Article and Find Full Text PDFBMC Biol
January 2025
Institute of Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
Background: Regeneration is the replacement of lost or damaged tissue with a functional copy. In axolotls and zebrafish, regeneration involves stem cells produced by de-differentiation. These cells form a growth zone which expresses developmental patterning genes at its apex.
View Article and Find Full Text PDFExp Mol Med
January 2025
Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.
The spatial organization of cells within a tissue is dictated throughout dynamic developmental processes. We sought to understand whether cells geometrically coordinate with one another throughout development to achieve their organization. The pancreas is a complex cellular organ with a particular spatial organization.
View Article and Find Full Text PDFNat Cell Biol
January 2025
Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA.
Plasticity is needed during development and homeostasis to generate diverse cell types from stem and progenitor cells. Following differentiation, plasticity must be restricted in specialized cells to maintain tissue integrity and function. For this reason, specialized cell identity is stable under homeostatic conditions; however, cells in some tissues regain plasticity during injury-induced regeneration.
View Article and Find Full Text PDFStargardt disease is a currently untreatable, inherited neurodegenerative disease that leads to macular degeneration and blindness due to loss-of-function mutations in the ABCA4 gene. We have designed a dual adeno-associated viral vector encoding a split-intein adenine base editor to correct the most common mutation in ABCA4 (c.5882G>A, p.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!