Preconditioning is an endogenous mechanism in which a nonlethal exposure increases cellular resistance to subsequent additional severe injury. Here we show that connexin 43 (Cx43) plays a key role in protection afforded by preconditioning. Cx43 null mice were insensitive to hypoxic preconditioning, whereas wild-type littermate mice exhibited a significant reduction in infarct volume after occlusion of the middle cerebral artery. In cultures, Cx43-deficient cells responded to preconditioning only after exogenous expression of Cx43, and protection was attenuated by small interference RNA or by channel blockers. Our observations indicate that preconditioning reduced degradation of Cx43, resulting in a marked increase in the number of plasma membrane Cx43 hemichannels. Consequently, efflux of ATP through hemichannels led to accumulation of its catabolic product adenosine, a potent neuroprotective agent. Thus, adaptive modulation of Cx43 can offset environmental stress by adenosine-mediated elevation of cellular resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6670356 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.3827-07.2008 | DOI Listing |
Aesthetic Plast Surg
January 2025
Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No. 15, Changle West Road, Xi'an, 710032, Shaanxi, China.
Background And Objective: Adipose-derived mesenchymal stem cell-derived extracellular vesicles (ASCs-Exos) possess angiogenic potential, which can enhance the retention rate of fat grafts. Hypoxic preconditioning can augment their functionality. However, the optimal conditions for hypoxic preconditioning and the specific mechanisms by which it exerts its effects are not well defined.
View Article and Find Full Text PDFZhongguo Shi Yan Xue Ye Xue Za Zhi
December 2024
Graduate School of Air Force Medical University, Xi'an 710032, Shaanxi Province, China.
Mesenchymal stem cells (MSC) possess unique immunomodulatory properties and have enormous potential in the treatment of graft-versus-host disease (GVHD). However, the low implantation and survival rates of MSC in vivo, coupled with their weak immunosuppressive functions, have resulted in unstable clinical efficacy in the treatment of GVHD. Preconditioning of MSC with hypoxia, active molecules and gene modification can enhance the function of MSC and improve the implantation rate, survival rate and therapeutic effect of MSC.
View Article and Find Full Text PDFIran J Biotechnol
July 2024
Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Objectives: This study investigated the impact of hypoxic preconditioning on the survival and oxidative stress tolerance of nestin-expressing hair follicle stem cells (hHFSCs) and SH-SY5Y neuroblastoma cells, two crucial cell types for central nervous system therapies. The study also examined the relative expression of three key genes, HIF1α, BDNF, and VEGF following hypoxic preconditioning.
Materials And Methods: hHFSCs were isolated from human hair follicles, characterized, and subjected to hypoxia for up to 72 hours.
Stem Cell Res Ther
December 2024
Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, P.R. China.
Background: hucMSC-exosomes can be engineered to strengthen their therapeutic potential, and the present study aimed to explore whether hypoxic preconditioning can enhance the angiogenic potential of hucMSC-exosomes in an experimental model of POF.
Methods: Primary hucMSCs and ROMECs were isolated from fresh tissue samples and assessed through a series of experiments. Exosomes were isolated from hucMSCs under normoxic or hypoxic conditions (norm-Exos and hypo-Exos, respectively) and then characterized using classic experimental methods.
Cell Death Dis
December 2024
Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
Neuronal necroptosis appears to be suppressed by the deubiquitinating enzyme A20 and is capable to regulate the polarization of microglia/macrophages after cerebral ischemia. We have demonstrated that hypoxic preconditioning (HPC) can alleviate receptor interacting protein 3 (RIP3)-induced necroptosis in CA1 after transient global cerebral ischemia (tGCI). However, it is still unclear whether HPC serves to regulate the phenotypic polarization of microglia/macrophages after cerebral ischemia by mitigating neuronal necroptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!