The 60 cell lines of the National Cancer Institute Anticancer Drug Screen (NCI-60) constitute the most extensively characterized in vitro cancer cell model. They have been tested for sensitivity to more than 100,000 potential chemotherapy agents and have been profiled extensively at the DNA, RNA, protein, functional, and pharmacologic levels. We have used the NCI-60 cell lines and three additional lines to develop a database of responses of cancer cells to ionizing radiation. We compared clonogenic survival, apoptosis, and gene expression response by microarray. Although several studies have profiled relative basal gene expression in the NCI-60, this is the first comparison of large-scale gene expression changes in response to genotoxic stress. Twenty-two genes were differentially regulated in cells with low survival after 2-Gy gamma-rays; 14 genes identified lines more sensitive to 8 Gy. Unlike reported basal gene expression patterns, changes in expression in response to radiation showed little tissue-of-origin effect, except for differentiating the lymphoblastoid cell lines from other cell types. Basal expression patterns, however, discriminated well between radiosensitive and more resistant lines, possibly being more informative than radiation response signatures. The most striking patterns in the radiation data were a set of genes up-regulated preferentially in the p53 wild-type lines and a set of cell cycle regulatory genes down-regulated across the entire NCI-60 panel. The response of those genes to gamma-rays seems to be unaffected by the myriad of genetic differences across this diverse cell set; it represents the most penetrant gene expression response to ionizing radiation yet observed.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-07-2120DOI Listing

Publication Analysis

Top Keywords

gene expression
24
cell lines
16
expression response
12
expression
8
cell
8
lines
8
lines national
8
national cancer
8
cancer institute
8
institute anticancer
8

Similar Publications

EZH2 inhibition induces pyroptosis via RHA-mediated S100A9 overexpression in myelodysplastic syndromes.

Exp Hematol Oncol

January 2025

Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Myelodysplastic Syndromes (MDS) represent a group of heterogeneous myeloid clonal diseases derived from aberrant hematopoietic stem/progenitor cells. Enhancer of zeste homolog 2 (EZH2) is an important regulator in gene expression through methyltransferase-dependent or methyltransferase-independent mechanisms. Herein, we found EZH2 inhibition led to MDS cell pyroptosis through RNA Helicase A (RHA) down-regulation induced overexpression of S100A9, a key regulator of inflammasome activation and pyroptosis.

View Article and Find Full Text PDF

Background: Glioblastoma is the commonest malignant brain tumor and has a very poor prognosis. Reduced expression of the MGMT gene (10q26.3), influenced primarily by the methylation of two differentially methylated regions (DMR1 and DMR2), is associated with a good response to temozolomide treatment.

View Article and Find Full Text PDF

Background: Osteoporosis (OP), often termed the "silent epidemic," poses a substantial public health burden. Emerging insights into the molecular functions of FBXW4 have spurred interest in its potential roles across various diseases.

Methods: This study explored FBXW4 by integrating DEGs from GEO datasets GSE2208, GSE7158, GSE56815, and GSE35956 with immune-related gene compilations from the ImmPort repository.

View Article and Find Full Text PDF

Objective: This study aimed to compare the expression of lymphoid enhancer factor 1 (LEF1) and β-catenin in basal cell adenoma (BA), desmoid-type fibromatosis (DF), and pancreatic solid pseudopapillary neoplasm (SPN) to evaluate their diagnostic utility in tumors associated with the WNT/β-catenin signaling pathway harboring the mutation of CTNNB1 gene 3 exon.

Methods: Eighty tumor patients, including 26 BAs, 30 DFs, and 24 SPNs, were analyzed. Immunohistochemical staining was identified positive (nuclear staining of LEF1 and β-catenin in > 50% of tumor cells).

View Article and Find Full Text PDF

Sex reversal induced by 17β-estradiol may be achieved by regulating the neuroendocrine system of the Pacific white shrimp Penaeus vannamei.

BMC Genomics

January 2025

Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.

Background: Due to sexual dimorphism in growth of penaeid shrimp, all-female cultivation is desirable for the aquaculture industry. 17β-estradiol (E2) has the potential to induce the male-to-female sex reversal of decapod species. However, the mechanisms behind it remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!