The microtubule-associated stable tubule only polypeptide (STOP) protein plays a key-role in neuron architecture and synaptic plasticity. Recent studies suggest that schizophrenia is associated with alterations in the synaptic connectivity. Mice invalidated for the STOP gene display phenotype reminiscent of some schizophrenic-like symptoms, such as behavioral disturbances, dopamine (DA) hyper-reactivity, and possible hypoglutamatergia, partly improved by antipsychotic treatment. In the present work, we examined potential alterations in some DAergic key proteins and behaviors in STOP knockout mice. Whereas the densities of the DA transporter, the vesicular monoamine transporter and the D(1) receptor were not modified, the densities of the D(2) and D(3) receptors were decreased in some DAergic regions in mutant versus wild-type mice. Endogenous DA levels were selectively decreased in DAergic terminals areas, although the in vivo DA synthesis was diminished both in cell bodies and terminal areas. The DA uptake was decreased in accumbic synaptosomes, but not significantly altered in striatal synaptosomes. Finally, STOP knockout mice were hypersensitive to acute and subchronic locomotor effects of cocaine, although the drug equally inhibited DA uptake in mutant and wild-type mice. Altogether, these data showed that deletion of the ubiquitous STOP protein elicited restricted alterations in DAergic neurotransmission, preferentially in the meso-limbic pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2007.05025.xDOI Listing

Publication Analysis

Top Keywords

alterations daergic
8
knockout mice
8
decreased daergic
8
wild-type mice
8
mice
5
microtubule-associated protein
4
protein deletion
4
deletion triggers
4
triggers restricted
4
restricted changes
4

Similar Publications

Interactions of VMAT2 with CDCrel-1 and Parkin in Methamphetamine Neurotoxicity.

Int J Mol Sci

December 2024

Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Detroit, MI 48201, USA.

In recent years, methamphetamine (METH) misuse in the US has been rapidly increasing, and there is no FDA-approved pharmacotherapy for METH use disorder (MUD). In addition to being dependent on the drug, people with MUD develop a variety of neurological problems related to the toxicity of this drug. A variety of molecular mechanisms underlying METH neurotoxicity has been identified, including the dysfunction of the neuroprotective protein parkin.

View Article and Find Full Text PDF

The T-2 toxin is a frequent contaminant in the global environment and agricultural production. Existing evidence suggests that the ingested T-2 toxin can enter the brain and exhibit neurotoxicity. However, it is still unknown whether T-2 toxin causes the depression-like behaviors.

View Article and Find Full Text PDF

Comparison of forced and voluntary exercise types on male rat brain monoamine levels, anxiety-like behaviour, and physiological indexes under light and dark phases.

Behav Brain Res

February 2025

Graduate School of Community & Human Services, Rikkyo University, 1-2-26 Kitano, Niiza, Saitama 352-8558, Japan; College of Sport &Wellness, Rikkyo University, 1-2-26 Kitano, Niiza, Saitama 352-8558, Japan.

Purpose: Physical exercise improves physical and mental health; however, the differences between voluntary and forced exercise protocols are unclear. In addition, knowledge regarding the consequences of differences in testing timing, such as light and dark phases, in response to exercise type is limited. We investigated the effects of chronic forced and voluntary wheel running on the changes in brain monoamine levels (5-HT: serotonin, DA: dopamine, NA: noradrenaline), anxiety-like behaviours, and physiological stress responses in the light and dark phases.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative condition characterized by the progressive and selective loss of dopaminergic (DAergic) neurons in the midbrain. The replacement of neuromelanin (NM)-containing DAergic neurons in the substantia nigra and the enhancement of NM concentration could offer a promising and safe approach to treating PD symptoms. The objective of this study was to investigate and compare the potential of human periapical-cysts mesenchymal stem cells (hPCy-MSCs) and dental pulp stem cells (DPSCs) to differentiate into DAergic NM-producing neurons and to generate functional 3-dimensional (3D) midbrain-like organoids in vitro.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a multifactorial, chronic, and progressive neurodegenerative disorder inducing movement alterations as a result of the loss of dopaminergic (DAergic) neurons of the pars compacta in the substantia nigra and protein aggregates of alpha synuclein (α-Syn). Although its etiopathology agent has not yet been clearly established, environmental and genetic factors have been suggested as the major contributors to the disease. Mutations in the glucosidase beta acid 1 () gene, which encodes the lysosomal glucosylceramidase (GCase) enzyme, are one of the major genetic risks for PD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!