We describe an information-theory-based measure of the quality of secondary structure prediction (RELINFO). RELINFO has a simple yet intuitive interpretation: it represents the factor by which secondary structure choice at a residue has been restricted by a prediction scheme. As an alternative interpretation of secondary structure prediction, RELINFO complements currently used methods by providing an information-based view as to why a prediction succeeds and fails. To demonstrate this score's capabilities, we applied RELINFO to an analysis of a large set of secondary structure predictions obtained from the first five rounds of the Critical Assessment of Structure Prediction (CASP) experiment. RELINFO is compared with two other common measures: percent correct (Q3) and secondary structure overlap (SOV). While the correlation between Q3 and RELINFO is approximately 0.85, RELINFO avoids certain disadvantages of Q3, including overestimating the quality of a prediction. The correlation between SOV and RELINFO is approximately 0.75. The valuable SOV measure unfortunately suffers from a saturation problem, and perhaps has unfairly given the general impression that secondary structure prediction has reached its limit since SOV hasn't improved much over the recent rounds of CASP. Although not a replacement for SOV, RELINFO has greater dispersion. Over the five rounds of CASP assessed here, RELINFO shows that predictions targets have been more difficult in successive CASP experiments, yet the predictions quality has continued to improve measurably over each round. In terms of information, the secondary structure prediction quality has almost doubled from CASP1 to CASP5. Therefore, as a different perspective of accuracy, RELINFO can help to improve prediction of protein secondary structure by providing a measure of difficulty as well as final quality of a prediction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/cmb.2007.0199 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
NIT Rourkela: National Institute of Technology Rourkela, Department of Chemistry, NIT Rourkela, 769008, Rourkela, INDIA.
Certain proteins and synthetic covalent polymers experience aqueous phase transitions, driving functional self-assembly. Herein, we unveil the ability of supramolecular polymers (SPs) formed by G4.Cu+ to undergo heating-induced unexpected aqueous phase transitions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
KU Leuven, Materials engineering, Kasteelpark Arenberg 44 bus 2450, 3001 LEUVEN Belgium, LEUVEN, BELGIUM.
Traditional polymer solid electrolytes (PSEs) suffer from low Li conductivity, poor kinetics and safety concerns. Here, we present a novel porous MOF glass gelled polymer electrolyte (PMG-GPE) prepared via a top-down strategy, which features a unique three-dimensional interconnected graded-aperture structure for efficient ion transport. Comprehensive analyses, including time-of-flight secondary ion mass spectrometry (TOF-SIMS), Solid-state 7Li magic-angle-spinning nuclear magnetic resonance (MAS-NMR), Molecular Dynamics (MD) simulations, and electrochemical tests, quantify the pore structures, revealing their relationship with ion conductivity that increases and then decreases as macropore proportion rises.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, Zurich 8092, Switzerland.
Temozolomide kills cancer cells by forming O6-methylguanine (O6-MeG), which leads to cell cycle arrest and apoptosis. However, O6-MeG repair by O6-methylguanine-DNA methyltransferase (MGMT) contributes to drug resistance. Characterizing genomic profiles of O6-MeG could elucidate how O6-MeG accumulation is influenced by repair, but there are no methods to map genomic locations of O6-MeG.
View Article and Find Full Text PDFBiophys Rev
December 2024
Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia.
Aptamers are short oligonucleotides that bind specifically to various ligands and are characterized by their low immunogenicity, thermostability, and ease of labeling. Many biomedical applications of aptamers as biosensors and drug delivery agents are currently being actively researched. Selective affinity selection with exponential ligand enrichment (SELEX) allows to discover aptamers for a specific target, but it only provides information about the sequence of aptamers; hence other approaches are used for determining aptamer structure, aptamer-ligand interactions and the mechanism of action.
View Article and Find Full Text PDFRNA viruses like SARS-CoV-2 have a high mutation rate, which contributes to their rapid evolution. The rate of mutations depends on the mutation type (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!