Osteoclastogenesis is induced by differentiation of hemopoietic cells of monocyte-macrophage lineage into bone-resorbing osteoclasts. The process is initiated by receptor activator of NF-kappaB ligand (RANKL) and resultant activation of mitogen-activated protein kinases (MAPK), including extracellular signal-regulated kinase (ERK)1/2, as well as the NFkappaB pathway. Phenethyl isothiocyanate (PEITC), a phytochemical present in various cruciferous plants, has been shown to disrupt those signaling pathways in several cell types. In this study, we examined the efficacy of PEITC for suppressing RANKL-induced osteoclastogenesis in RAW264.7 murine macrophages and addressed the underlying molecular mechanisms. PEITC (2-10 microM) suppressed osteoclastogenesis in a concentration dependent manner, as detected by tartarate-resistant acid phosphatase (TRAP) activity and microscopic observations. RANKL-up-regulated extracellular signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) activities were attenuated by PEITC, whereas c-Jun N-terminal kinase (JNK1/2) activation was increased. PEITC also abrogated the RANKL-induced degradation of IkappaB-alpha, a suppressive partner of nuclear factor kappaB (NFkappaB), thereby inhibiting transcription activity, as detected by a reporter assay. In addition, PEITC reduced the level of NFkappaB-dependent mRNA expression of nuclear factor of activated T cell (NFAT)c1, a master regulator of osteoclastogenesis. Our results indicate that PEITC is a promising agent for treatment of osteoclastogenesis with a reasonable action mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/biof.5520300101 | DOI Listing |
Phytother Res
December 2024
Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania.
Recent research has increasingly focused on phytochemicals as promising anticancer agents, with glucosinolates (GSLs) and their hydrolytic derivatives playing a central role. These sulfur-containing compounds, found in plants of the Brassicales order, are converted by myrosinase enzymes into biologically active products, primarily isothiocyanates (ITCs) and indoles, which exhibit significant anticancer properties. Indole-3-carbinol, diindolylmethane, sulforaphane (SFN), phenethyl isothiocyanate (PEITC), benzyl isothiocyanate, and allyl isothiocyanate have shown potent anticancer effects in animal models, particularly in breast, prostate, lung, melanoma, bladder, hepatoma, and gastrointestinal cancers.
View Article and Find Full Text PDFCancer Cell Int
December 2024
Department of Biology, University of Alabama at Birmingham, 3100 East Science Hall, 902 14th Street South, Birmingham, AL, 35294-1170, USA.
Background: Epigenetic phytochemicals are considered as an efficacious and safe alternative to synthetic drugs in drug discovery. In this regard, combinatorial interventions enable simultaneously targeting various neoplastic pathways to eradicate multiple tumorigenic clones. Therefore, we evaluated the effects of the epigenetic-modifying compounds phenethyl isothiocyanate (PEITC) and withaferin A (WA) alone and in combination on cancer hallmarks and miRNome profiles of breast cancer (BC) cells in addition to their impact on multiple epigenetic regulatory pathways.
View Article and Find Full Text PDFEur J Nutr
December 2024
Department of Medical Biology and Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland.
Purpose: Autophagy is a degradation process whose activation underlies beneficial effects of caloric restriction. Isothiocyanates (ITCs) induce autophagy in cancer cells, however, their impact on primary cells remains insufficiently explored, particularly in non-epithelial cells. The aim of this study was to investigate whether ITCs induce autophagy in primary (non-immortalized) mesenchymal cells and if so, to determine the molecular mechanism underlying its activation and consequences on cell functioning.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
December 2024
School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China.
J Tissue Eng
November 2024
Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany.
Non-healing bone defects are a pressing public health concern accounting for one main cause for decreased life expectancy and quality. An aging population accompanied with increasing incidence of comorbidities, foreshadows a worsening of this socio-economic problem. Conventional treatments for non-healing bone defects prove ineffective for 5%-10% of fractures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!