The profound alterations produced by cocaine on dopamine (DA) neurotransmission raise the possibility that dopamine transporter (DAT)-expressing neurons may modify DA transport in response to repeated cocaine exposure to maintain the appropriate efficiency of DA clearance. In this study, we determined the changes in molecular mechanisms of DAT regulation in rats with a history of repeated cocaine self-administration followed by 3 weeks of abstinence. Using ex vivo caudate putamen (CPu) and nucleus accumbens (NAcc) synaptosomal preparations, we found that DA uptake was significantly higher in the CPu and NAcc of cocaine-experienced animals compared with yoked saline animals. Surface distribution, p-Ser phosphorylation, and protein phosphatase 2A catalytic subunit (PP2Ac) interaction of DAT were all altered in the CPu. Maximal velocity (V(max)) values were elevated both in the CPu and NAcc of cocaine-experienced rats compared with saline controls. Although there was no change in the apparent affinity for DA in the CPu, increased DA affinity was evident in the NAcc. Consistent with elevated DAT activity in cocaine-experienced animals, a higher level of surface DAT, DAT-PP2Ac association, and decreased serine phosphorylation of DAT were observed in the CPu, but not in the NAcc. These results, for the first time, suggest that chronic cocaine self-administration followed by abstinence leads to persisting alterations in normal DAT trafficking and catalytic regulatory cascades in the CPu and NAcc in a brain region-specific manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/jpet.107.130534 | DOI Listing |
J Chem Neuroanat
November 2024
Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico. Electronic address:
Steroids
January 2024
Dept. of Biological Sciences, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA. Electronic address:
The striatal brain regions encompassing the nucleus accumbens core (NAcc), shell (NAcs) and caudate-putamen (CPu) regulate cognitive functions including motivated behaviors, habit, learning, and sensorimotor action, among others. Sex steroid hormone sensitivity and sex differences have been documented in all of these functions in both normative and pathological contexts, including anxiety, depression and addiction. The neurotransmitter glutamate has been implicated in regulating these behaviors as well as striatal physiology, and there are likewise documented sex differences in glutamate action upon the striatal output neurons, the medium spiny neurons (MSNs).
View Article and Find Full Text PDFSynapse
July 2023
Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico.
Olfaction is a complex physiological process producing effects in the central nervous system (CNS) and implicated in emotional processes. Indeed, the olfactory bulbs (OB) send projections to various CNS regions including the nucleus accumbens (NAcc) and caudate-putamen (CPu). Both the NAcc and CPu receive important dopaminergic input.
View Article and Find Full Text PDFBehav Brain Res
April 2023
Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; CNR Institute of Neuroscience, Cagliari, National Research Council, Cagliari, Italy.
Compelling data support altered dopamine (DA) and serotonin (5-HT) signaling in anorexia nervosa (AN). However, their exact role in the etiopathogenesis of AN has yet to be elucidated. Here, we evaluated the corticolimbic brain levels of DA and 5-HT in the induction and recovery phases of the activity-based anorexia (ABA) model of AN.
View Article and Find Full Text PDFJ Neuroendocrinol
January 2021
Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
Gonadal hormones affect neuronal morphology to ultimately regulate behaviour. In female rats, oestradiol mediates spine plasticity in hypothalamic and limbic brain structures, contributing to long-lasting effects on motivated behaviour. Parallel effects of androgens in male rats have not been extensively studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!