We investigated the network relationships of bacteria in a structurally stable mixed culture degrading cellulose. The mixed culture consists of four bacterial strains (a cellulose-degrading anaerobe [strain S], a saccharide-utilizing anaerobe [strain F], a peptide- and acetate-utilizing aerobe [strain 3] and a peptide-, glucose-, and ethanol-utilizing aerobe [strain 5]). Interspecies interactions were examined by analyzing the effects of culture filtrates on the growth of the other strains and by comprehensively analyzing population dynamics in the mixed-culture systems with all possible combinations of the four bacterial strains. The persistence of strain S depends on the effects of strain 5. However, strain 5 is a disadvantaged strain because strain 3 has bacteriocidal activity on strain 5. The extinction of strain 5 is indirectly prevented by strain F that suppresses the growth of strain 3. Although strain F directly has suppressive effects on the growth of strain S, strain F is essential for the persistence of strain S, considering the indirect effects (maintaining strain 5, which is essential for the survival of strain S, by inhibiting strain 3). These indirect relationships form a bacterial network in which all the relationships including suppressive effects were well balanced to maintain the structural stability. In addition to direct metabolite interactions, such kind of indirect relationships could have a great impact on microbial community structure in the natural environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00248-007-9357-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!