Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: Segmental sensory nerve conduction velocity (SNCV) was measured from the wrists to the hands and digits in a population of 134 (126 men and 8 women) vibration-exposed shipyard workers following systemic warming using a bicycle ergometer. Results were compared to earlier nerve conduction tests, identical in execution, except that the warming process was segmental and cutaneous. The study was designed to investigate whether SNCVs, which were selectively slow in the fingers after segmental cutaneous (skin surface) warming, would be affected differently by systemic warming.
Methods: Wrist-palm, palm-proximal digit, and digital sensory nerve segments were assessed antidromically by stimulating at the wrist with recording electrodes placed distally. The same subjects were cutaneously warmed in 2001 to >or=31 degrees C and were systemically warmed 28 months later in 2004 by ramped sustained exercise to 100 W for 12 min. Skin temperatures were measured by traditional thermistry and by infrared thermal images taken over the hand and wrist surfaces.
Results: When systemic warming was compared to segmental cutaneous warming, SNCVs were increased by 15.1% in the third digit and 20.4% in the fifth digit of the dominant hand. Respective increases in the non-dominant hand were 11.0% and 19.4%. A strong association between increased surface skin temperature and faster SNCV, which had been observed after segmental cutaneous warming, was largely eliminated for both digit and palmar anatomic segments after systemic warming. Significant differences in SNCV between vibration-exposed and non-exposed workers, which had been observed after segmental cutaneous warming, were eliminated after systemic warming. Systemic warming had only a small effect on the wrist-palm (transcarpal) segmental SNCVs.
Conclusions: Reduced SNCV in the digits was observed in vibration-exposed and non-exposed workers. Substituting exercise-induced systemic warming for segmental cutaneous warming significantly increased SNCV in the digits and appeared to reduce differences in SNCV between vibration-exposed and non-exposed workers. These findings persisted despite a substantial time interval between tests, during which the subjects continued to work. There may be more general implications for diagnosing clinical conditions in industrial workers, such as the carpal tunnel syndrome and the hand-arm vibration syndrome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00420-007-0299-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!