Properly committed neural stem cells constitute a promising source of cells for transplantation in Parkinson's disease, but a protocol for controlled dopaminergic differentiation is not yet available. To establish a setting for identification of secreted neural compounds promoting dopaminergic differentiation, we co-cultured cells from a human neural forebrain-derived stem cell line (hNS1) with rat striatal brain slices. In brief, coronal slices of neonatal rat striatum were cultured on semiporous membrane inserts placed in six-well trays overlying monolayers of hNS1 cells. After 12 days of co-culture, large numbers of tyrosine hydroxylase (TH)-immunoreactive, catecholaminergic cells could be found underneath individual striatal slices. Cell counting revealed that up to 25.3% (average 16.1%) of the total number of cells in these areas were TH-positive, contrasting a few TH-positive cells (<1%) in non-induced areas. The presence of dopamine in the conditioned culture medium was confirmed by HPLC analysis. Interestingly, not all striatal slice cultures induced TH-expression in underlying hNS1 cells. Common to TH-inductive cultures was, however, the presence of degenerating, necrotic areas, suggesting that factors released during striatal degeneration were responsible for the dopaminergic induction of the hNS1 cells. Ongoing experiments aim to identify such factors by comparing protein profiles of media conditioned by degenerating (necrotic) versus healthy striatal slice cultures.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2007.05164.xDOI Listing

Publication Analysis

Top Keywords

dopaminergic differentiation
12
human neural
8
neural stem
8
cells
8
stem cells
8
rat striatal
8
striatal brain
8
brain slices
8
differentiation human
4
neural
4

Similar Publications

Oxidation of dopamine can cause various side effects, which ultimately leads to cell death and contributes to Parkinson's disease (PD). To counteract dopamine oxidation, newly synthesized dopamine is quickly transported into vesicles via vesicular monoamine transporter 2 (VMAT2) for storage. VMAT2 expression is reduced in patients with PD, and studies have shown increased accumulation of dopamine oxidation byproducts and α-synuclein in animals with low VMAT2 expression.

View Article and Find Full Text PDF

Specific plasma metabolite profile in intestinal Behçet's syndrome.

Orphanet J Rare Dis

January 2025

Department of Rheumatology and Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.

Background: Intestinal Behçet's syndrome (IBS) has high morbidity and mortality rates with serious complications. However, there are few specific biomarkers for IBS. The purposes of this study were to investigate the distinctive metabolic changes in plasma samples between IBS patients and healthy people, active IBS and inactive IBS patients, and to identify candidate metabolic biomarkers which would be useful for diagnosing and predicting IBS.

View Article and Find Full Text PDF

This study aimed to investigate the metabolic mechanisms underlying the combination of patent foramen ovale (PFO) and migraine by assessing metabolite expression before and after interventional occlusion surgery. The study included 11 PFO patients from the Heart Center of Xinjiang Medical University Affiliated Hospital of Traditional Chinese Medicine, who underwent transcatheter PFO intervention and occlusion surgery between January 2018 and February 2023, and 11 healthy controls. Blood samples were collected pre-surgery, 3 days post-surgery, and 30 days post-surgery for metabolomics analysis.

View Article and Find Full Text PDF

The kinetically-derived maximal dose (KMD) is defined as the maximum external dose at which kinetics are unchanged relative to lower doses, e.g., doses at which kinetic processes are not saturated.

View Article and Find Full Text PDF

Establishment of a novel method for differentiating into dopaminergic neurons using charged hydrogels.

Biochem Biophys Res Commun

January 2025

Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; World Premier International Research Center Initiative, Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan. Electronic address:

Parkinson's disease (PD) is a neurodegenerative disease primarily affecting the central nervous system and impacting both the motor system and non-motor systems. Although administration of L-DOPA is effective, it is not a fundamental treatment and has side effects such as diurnal fluctuation and dyskinesia, highlighting the need for new treatment methods. There is a growing interest in dopaminergic neuron transplantation as a potential treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!