Pro-healing drug-eluting stents: a role for antioxidants?

Clin Sci (Lond)

Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0NR, Scotland, UK.

Published: February 2008

Current strategies to lower the incidence of ISR (in-stent restenosis) following PCI (percutaneous coronary intervention) are aimed at modifying arterial healing after stent injury. This can impair endothelial recovery and render the vessel prone to acute thrombosis. As early restoration of endothelial integrity inhibits neointimal growth and thrombosis, alternative approaches which encourage this process may provide a more effective long-term result after PCI. Oxidative stress is enhanced after PCI and participates in the regulation of endothelial regeneration and neointimal growth. Moreover, evidence suggests antioxidants improve re-endothelialization and inhibit ISR. By promoting, rather than blocking, the healing process, antioxidant and other therapies may offer an alternative or additional approach over the antiproliferative approaches common to many current devices.

Download full-text PDF

Source
http://dx.doi.org/10.1042/CS20070207DOI Listing

Publication Analysis

Top Keywords

neointimal growth
8
pro-healing drug-eluting
4
drug-eluting stents
4
stents role
4
role antioxidants?
4
antioxidants? current
4
current strategies
4
strategies lower
4
lower incidence
4
incidence isr
4

Similar Publications

In-stent restenosis (ISR) following interventional therapy is a fatal clinical complication. Current evidence indicates that neointimal hyperplasia driven by uncontrolled proliferation of vascular smooth muscle cells (VSMC) is a major cause of restenosis. This implies that inhibiting VSMC proliferation may be an attractive approach for preventing in-stent restenosis.

View Article and Find Full Text PDF

Modification of polylactic acid (PLA) is a promising strategy for the next generation of bioresorbable vascular stent biomaterials. With this focus, FeMOFs nanoparticles was incorporated in PLA, and then post loading of carbon monoxide (CO) was performed by pressurization. It showed FeMOFs incorporation increased hydrophilicity of the surface and CO loading, and CO release was sustained at least for 3 days.

View Article and Find Full Text PDF

Bone Marrow-derived NGFR-positive Dendritic Cells Regulate Arterial Remodeling.

Am J Physiol Cell Physiol

January 2025

Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan.

It has been proposed that bone marrow contributes to the pathogenesis of arteriosclerosis. Nerve growth factor receptor (NGFR) is expressed in bone marrow stromal cells; it is also present in peripheral blood and ischemic coronary arteries. We hypothesized that bone marrow-derived NGFR-positive (NGFR) cells regulate arterial remodeling.

View Article and Find Full Text PDF

PCSK9 promotes vascular neointimal hyperplasia through non-lipid regulation of vascular smooth muscle cell proliferation, migration, and autophagy.

Biochem Biophys Res Commun

January 2025

Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China; Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050031, Hebei, China. Electronic address:

We aim to explore the impact of Proprotein convertase subtilisin-kexin type 9 (PCSK9) and its inhibitor evolocumab on neointimal hyperplasia. Wild type and PCSK9 knockout (PCSK9) mice were subjected to ligation of the common carotid artery, with or without subcutaneous injection of evolocumab. Mouse aortic vascular smooth muscle (MOVAS) cells were pretreated with evolocumab or under siRNA-mediated suppression of PCSK9, and then exposed to platelet-derived growth factor type BB(PDGF-BB), a major promoter of MOVAS transformation to a proliferative phenotype.

View Article and Find Full Text PDF

Background: The Rho kinases 1 and 2 (ROCK1/2) are serine-threonine specific protein kinases that control actin cytoskeleton dynamics. They are expressed in all cells throughout the body, including cardiomyocytes, smooth muscle cells and endothelial cells, and intimately involved in cardiovascular health and disease. Pharmacological ROCK inhibition is beneficial in mouse models of hypertension, atherosclerosis, and neointimal thickening that display overactivated ROCK.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!