A classification method to distinguish cell-specific responses elicited by current pulses in hippocampal CA1 pyramidal cells.

Neural Comput

Department of Biological Sciences, Neuroscience Program and Quantitative Biology Institute, Ohio University, Athens, OH 45701, USA.

Published: June 2008

The suprathreshold electrophysiological responses of pyramidal cells have been grouped into large classes such as bursting and spiking. However, it is not known whether, within a class, response variability ranges uniformly across all cells or whether each cell has a unique and consistent profile that can be differentiated. A major difficulty when comparing suprathreshold responses is that slight variations in spike timing in otherwise very similar traces render traditional metrics ineffective. To address these issues, we developed a novel distance measure based on fiducial points to quantify the similarity among traces with trains of action potentials and applied it together with classification techniques to a set of in vitro patch clamp recordings from CA1 pyramidal cells. We tested if responses to repeated current stimulation of a given cell would cluster together yet remain distinct from those of other cells. We found that depolarizing and hyperpolarizing current pulses elicited responses in each cell that clustered and were systematically distinguishable from responses in other cells. The fiducial-point distance measure was more effective than other methods based on spike times and voltage-gradient phase planes. Depolarizing traces were more reliably differentiated than hyperpolarizing traces, and combining both scores was even more effective. These results suggest that each CA1 pyramidal cell has unique properties that can be detected and quantified with methods discussed here. This uniqueness may be due to slight variations in morphology or membrane channel densities and kinetics, or to large, coordinated variations in these elements. Ascertaining the actual sources and their degree of variability is important when constructing network models of neural function to ensure that key mechanisms are robust in the face of variations within these ranges. The analytical tools presented here can assist in constructing detailed cell models to match experimental records to elucidate the sources of electrophysiological variability in neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2900194PMC
http://dx.doi.org/10.1162/neco.2007.07-07-564DOI Listing

Publication Analysis

Top Keywords

ca1 pyramidal
12
pyramidal cells
12
current pulses
8
cell unique
8
slight variations
8
distance measure
8
responses
6
cells
6
cell
5
classification method
4

Similar Publications

Cannabis derivatives are among the most widely used psychoactive substances in the world, which leads to growing medical concerns regarding its chronic use and abuse especially among adolescents. Exposure to THC during formative years produces long-term behavioral alterations that share similarities with symptoms of psychiatric and neurodevelopmental disorders. In this study, we have analyzed the functional and molecular mechanisms that might underlie these alterations.

View Article and Find Full Text PDF

Background: Closely related to the subfamily of proapoptotic proteins is the antiapoptotic protein bcl-2, which acts as an intracellular blocker of the mitochondrial apoptotic pathway. By inhibiting the action of effector caspases, as well as blocking the release of AIF and cytochrome C, Bcl-2 prevents regulated cell death and ensures survival in conditions of damage.

Method: The study was performed on Wistar rats, which were subjected to gravitational overloads (9g) in the caudocranial vector for 5 minutes twice a day for 28 days.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Department of Bioengineering, University of California, Los Angeles, CA, USA, Los Angeles, CA, USA.

Background: The initiation of amyloid plaque deposition signifies a crucial stage in Alzheimer's disease (AD) progression, which often coincides with the disruption of neural circuits and cognitive decline. While the role of excitatory-inhibitory balance is increasingly recognized in AD pathophysiology, targeted therapies to modulate this balance remain underexplored. This study investigates the effect of perampanel, a selective non-competitive AMPA receptor antagonist, in modulating neurophysiological changes in hAPP-J20 transgenic Alzheimer's mice.

View Article and Find Full Text PDF
Article Synopsis
  • Variants associated with neurodevelopmental impairments in children are complex and challenging to evaluate due to their diverse nature and unclear causes.
  • The study highlights a case of a child with neonatal-onset epilepsy and a specific genetic variant (G256W) that impacts ion channel function and leads to reduced cell stability and conduction in nervous tissue.
  • The research also establishes a mouse model that exhibits epilepsy and hyperexcitability in brain cells, linking the genetic variant to observable neurological behaviors and suggesting potential wider implications for understanding similar conditions in other patients.
View Article and Find Full Text PDF

Pyramidal cells (PCs) in CA1 hippocampus can be classified by their radial position as deep or superficial and organize into subtype-specific circuits necessary for differential information processing. Specifically, superficial PCs receive fewer inhibitory synapses from parvalbumin (PV)-expressing interneurons than deep PCs, resulting in weaker feedforward inhibition of input from CA3 Schaffer collaterals. Using mice, we investigated mechanisms underlying CA1 PC differentiation and the development of this inhibitory circuit motif.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!