Bacillus Calmette-Guérin (BCG) is the only preventive treatment for tuberculosis in humans, but this live vaccine confers variable protection against pulmonary tuberculosis in adults. Advances in the understanding of Mycobacterium tuberculosis immunopathogenesis have renewed hopes of developing new prophylactic vaccines conferring better protection than BCG. The authors describe here state-of-the-art attenuated live vaccines based on inactivation of the phoP gene, a transcriptional regulator of key virulence networks in M. tuberculosis. Recent preclinical testing of live vaccines based on phoP inactivation has demonstrated proof of concept, with a high degree of attenuation and protection against disease observed in various animal models. These results demonstrate that phoP mutants are promising new live vaccines for tuberculosis prevention. The steps that now need to be followed, to take these live vaccines towards clinical trials, are also reviewed, together with the potential of these vaccines to replace BCG.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1517/14712598.8.2.201 | DOI Listing |
Vet Sci
December 2024
Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea.
Duck hepatitis A virus type 3 (DHAV-3) is a viral pathogen that causes acute, high-mortality hepatitis in ducklings, and vaccination with attenuated live vaccines is currently the main preventive measure against it. However, differentiating infected from vaccinated animals (DIVA) is crucial for clinical diagnosis and effective disease control. This study aimed to develop a rapid mismatch amplification mutation assay PCR (MAMA-PCR) diagnostic method to simultaneously detect and differentiate between wild-type and vaccine strains.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Moredun Research Institute, Pentlands Science Park, Penicuik, Midlothian EH26 0PZ, UK.
Background/objective: , the cause of ovine enzootic abortion, is a zoonotic bacterial pathogen and one of the most infectious causes of foetal death in sheep worldwide. Although the disease can be controlled using commercial inactivated and live whole-organism vaccines, there are issues with both, particularly concerning efficacy and safety. Recently, we have described the development of a new COMC (chlamydial outer membrane complex) vaccine based on a detergent-extracted outer membrane protein preparation of the pathogen, which can be delivered in a single inoculation and is both efficacious and safe.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
Recoding strategies have emerged as a promising approach for developing safer and more effective vaccines by altering the genetic structure of microorganisms, such as viruses, without changing their proteins. This method enhances vaccine safety and efficacy while minimizing the risk of reversion to virulence. Recoding enhances the frequency of CpG dinucleotides, which in turn activates immune responses and ensures a strong attenuation of the pathogens.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA.
Background/objectives: Conventional live oral poliovirus vaccines (OPVs) effectively prevent poliomyelitis. These vaccines are derived from three attenuated Sabin strains of poliovirus, which can revert within the first week of replication to a neurovirulent phenotype, leading to sporadic cases of vaccine-associated paralytic poliomyelitis (VAPP) among vaccinees and their contacts. A novel OPV2 vaccine (nOPV2) with enhanced genetic stability was developed recently; type 1 and type 3 nOPV strains were engineered using the nOPV2 genome as a backbone by replacing the capsid precursor polyprotein (P1) with that of Sabin strains type 1 and type 3, respectively.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
Background/objectives: In preparation for a potential pandemic caused by the H5N1 highly pathogenic avian influenza (HPAI) virus, pre-pandemic vaccines against several viral clades have been developed and stocked worldwide. Although these vaccines are well tolerated, their immunogenicity and cross-reactivity with viruses of different clades can be improved.
Methods: To address this aspect, we generated recombinant influenza vaccines against H5-subtype viruses using two different strains of highly attenuated vaccinia virus (VACV) vectors.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!